Role of mechanical factors in applications of stimuli-responsive polymer gels - Status and prospects

被引:32
|
作者
Goponenko, Alexander V. [1 ]
Dzenis, Yuris A. [1 ]
机构
[1] Univ Nebraska, Dept Mech & Mat Engn, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
Hydrogels; Stimuli-responsive gels; Mechanical properties; Swelling; Sensors; Actuators; GROWTH-FACTOR DELIVERY; IMMOBILIZED GLUCOSE-OXIDASE; ALKYL ACRYLATE COPOLYMERS; VOLUME PHASE-TRANSITION; TUMOR EXTRACELLULAR PH; OF-THE-ART; DRUG-DELIVERY; POLY(N-ISOPROPYLACRYLAMIDE) HYDROGELS; SENSITIVE HYDROGELS; CONTROLLED-RELEASE;
D O I
10.1016/j.polymer.2016.08.068
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Due to their unique characteristics such as multifold change of volume in response to minute change in the environment, resemblance of soft biological tissues, ability to operate in wet environments, and chemical tailorability, stimuli-responsive gels represent a versatile and very promising class of materials for sensors, muscle-type actuators, biomedical applications, and autonomous intelligent structures. Success of these materials in practical applications largely depends on their ability to fulfill application specific mechanical requirements. This article provides an overview of recent application-driven development of covalent polymer gels with special emphasis on the relevant mechanical factors and properties. A short account of mechanisms of gel swelling and mechanical characteristics of importance to stimuli-responsive gels is presented. The review highlights major barriers for wider application of these materials and discusses latest advances and potential future directions toward overcoming these barriers, including interpenetrating networks, homogeneous networks, nanocomposites, and nano filamentary gels. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:415 / 449
页数:35
相关论文
共 50 条
  • [21] Stimuli-Responsive Polysaccharide Hydrogels and Their Composites for Wound Healing Applications
    Psarrou, Maria
    Mitraki, Anna
    Vamvakaki, Maria
    Kokotidou, Chrysoula
    POLYMERS, 2023, 15 (04)
  • [22] Stimuli-responsive polymers and their applications in drug delivery
    Bawa, Priya
    Pillay, Viness
    Choonara, Yahya E.
    du Toit, Lisa C.
    BIOMEDICAL MATERIALS, 2009, 4 (02)
  • [23] Stimuli-responsive photonic polymer coatings
    Stumpel, Jelle E.
    Broer, Dirk J.
    Schenning, Albertus P. H. J.
    CHEMICAL COMMUNICATIONS, 2014, 50 (100) : 15839 - 15848
  • [24] Click-formed polymer gels with aggregation-induced emission and dual stimuli-responsive behaviors
    Shi, Sheng-yu
    Zhang, Guo-ying
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2021, 34 (03) : 365 - 372
  • [25] Natural Polymer-based Stimuli-responsive Hydrogels
    Jiang, Yuheng
    Wang, Ying
    Li, Qin
    Yu, Chen
    Chu, Wanli
    CURRENT MEDICINAL CHEMISTRY, 2020, 27 (16) : 2631 - 2657
  • [26] Tailoring Polymer-Based Nanoassemblies for Stimuli-Responsive Theranostic Applications
    Muthwill, Moritz S.
    Kong, Phally
    Dinu, Ionel Adrian
    Necula, Danut
    John, Christoph
    Palivan, Cornelia G.
    MACROMOLECULAR BIOSCIENCE, 2022, 22 (11)
  • [27] Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels
    Wu, Jiuping
    Xue, Wu
    Yun, Zhihe
    Liu, Qinyi
    Sun, Xinzhi
    MATERIALS TODAY BIO, 2024, 25
  • [28] Stimuli-Responsive Polypeptides for Biomedical Applications
    Lee, DaeYong
    Rejinold, N. Sanoj
    Jeong, Seong Dong
    Kim, Yeu-Chun
    POLYMERS, 2018, 10 (08)
  • [29] Biomedical applications of stimuli-responsive nanomaterials
    Chen, Xiaojie
    Wu, Di
    Chen, Zhong
    MEDCOMM, 2024, 5 (08):
  • [30] Stimuli-responsive glycopolymers and their biological applications
    Jafari, Farnaz
    Yilmaz, Gokhan
    Becer, C. Remzi
    EUROPEAN POLYMER JOURNAL, 2021, 142