Dynamics of Two Vortex Rings in a Bose - Einstein Condensate

被引:3
作者
Artemova, Elizaveta M. [1 ]
Kilin, Alexander A. [1 ,2 ]
机构
[1] Udmurt State Univ, Ural Math Ctr, Ul Universitetskaya 1, Izhevsk 426034, Russia
[2] RAS, Inst Math & Mech, Ural Branch, Ul S Kovalevskoi 16, Ekaterinburg 620990, Russia
关键词
Bose - Einstein condensate; point vortices; vortex rings; bifurcation analysis; POINT VORTICES; STABILITY; MODEL; MOTION; CONFIGURATIONS; ROTATION; GON;
D O I
10.1134/S1560354722060089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the dynamics of two interacting point vortex rings in a Bose - Einstein condensate. The existence of an invariant manifold corresponding to vortex rings is proved. Equations of motion on this invariant manifold are obtained for an arbitrary number of rings from an arbitrary number of vortices. A detailed analysis is made of the case of two vortex rings each of which consists of two point vortices where all vortices have same topological charge. For this case, partial solutions are found and a complete bifurcation analysis is carried out. It is shown that, depending on the parameters of the Bose - Einstein condensate, there are three different types of bifurcation diagrams. For each type, typical phase portraits are presented.
引用
收藏
页码:713 / 732
页数:20
相关论文
共 56 条
  • [1] POINT VORTEX MOTIONS WITH A CENTER OF SYMMETRY
    AREF, H
    [J]. PHYSICS OF FLUIDS, 1982, 25 (12) : 2183 - 2187
  • [2] Arnold V. I., 1986, SOVREM PROBL MAT FUN, V5, P5
  • [3] Nonlinear stability of regular vortex polygons in a Bose-Einstein condensate
    Artemova, Elizaveta
    Kilin, Alexander
    [J]. PHYSICS OF FLUIDS, 2021, 33 (12)
  • [4] Topology and Bifurcations in Nonholonomic Mechanics
    Bizyaev, Ivan A.
    Bolsinov, Alexey
    Borisov, Alexey
    Mamaev, Ivan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10):
  • [5] Bogomolov V. A., 1977, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, P57
  • [6] BOGOMOLOV VA, 1979, IZV AN SSSR FIZ ATM+, V15, P29
  • [7] BOGOMOLOV VA, 1979, IZV AN SSSR FIZ ATM+, V15, P243
  • [8] [Борисов Алексей Владимирович Borisov A.V.], 2006, [Нелинейная динамика, Russian Journal of Nonlinear Dynamics, Nelineinaya dinamika], V2, P181
  • [9] STABILITY OF THOMSON'S CONFIGURATIONS OF VORTICES ON A SPHERE
    Borisov, A. V.
    Kilin, A. A.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2000, 5 (02) : 189 - 200
  • [10] Borisov A. V., 2005, MATH METHODS DYNAMIC