Direct Low-Temperature Integration of Nanocrystalline Diamond with GaN Substrates for Improved Thermal Management of High-Power Electronics

被引:62
作者
Goyal, Vivek [1 ,2 ]
Sumant, Anirudha V. [3 ]
Teweldebrhan, Desalegne [1 ,2 ]
Balandin, Alexander A. [1 ,2 ]
机构
[1] Univ Calif Riverside, Dept Elect Engn, Nanodevice Lab, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
关键词
nanocrystalline diamond; thermal conductivity; gallium nitride; thermal management; synthetic diamond; CONDUCTIVITY; ULTRANANOCRYSTALLINE; TRANSPORT; FILMS; CVD;
D O I
10.1002/adfm.201102786
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel approach for the direct synthetic diamondGaN integration via deposition of the high-quality nanocrystalline diamond films directly on GaN substrates at temperatures as low as 450-500 degrees C is reported. The low deposition temperature allows one to avoid degradation of the GaN quality, which is essential for electronic applications The specially tuned growth conditions resulted in the large crystalline diamond grain size of 100-200 nm without coarsening. Using the transient hot disk measurements it is demonstrated that the effective thermal conductivity of the resulting diamond/GaN composite wafers is higher than that of the original GaN substrates at elevated temperatures. The thermal crossover point is reached at 95-125 degrees C depending on the thickness of the deposited films. The developed deposition technique and obtained thermal characterization data can lead to a new method of thermal management of the high power GaN electronic and optoelectronic devices.
引用
收藏
页码:1525 / 1530
页数:6
相关论文
共 35 条
[1]   Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films [J].
Angadi, Maki A. ;
Watanabe, Taku ;
Bodapati, Arun ;
Xiao, Xingcheng ;
Auciello, Orlando ;
Carlisle, John A. ;
Eastman, Jeffrey A. ;
Keblinski, Pawel ;
Schelling, Patrick K. ;
Phillpot, Simon R. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (11)
[2]   High-temperature phonon thermal conductivity of nanostructures [J].
Braginsky, L ;
Lukzen, N ;
Shklover, V ;
Hofmann, H .
PHYSICAL REVIEW B, 2002, 66 (13) :1-9
[3]   The CVD of nanodiamond materials [J].
Butler, James E. ;
Sumant, Anirudha V. .
CHEMICAL VAPOR DEPOSITION, 2008, 14 (7-8) :145-160
[4]   Comparison of GaNHEMTs on diamond and SiC substrates [J].
Felbinger, Jonathan G. ;
Chandra, M. V. S. ;
Sun, Yunju ;
Eastman, Lester F. ;
Wasserbauer, John ;
Faili, Firooz ;
Babic, Dubravko ;
Francis, Daniel ;
Ejeckam, Felix .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (11) :948-950
[5]  
Filippov KA, 2003, MRS INTERNET J N S R, V8
[6]   Formation and characterization of 4-inch GaN-on-diamond substrates [J].
Francis, D. ;
Faili, F. ;
Babic, D. ;
Ejeckam, F. ;
Nurmikko, A. ;
Maris, H. .
DIAMOND AND RELATED MATERIALS, 2010, 19 (2-3) :229-233
[7]  
Francis D., 2007, Proc. CS MANTECH, V2007, P133
[8]   Electron transport in AlGaN-GaN heterostructures grown on 6H-SiC substrates [J].
Gaska, R ;
Yang, JW ;
Osinsky, A ;
Chen, Q ;
Khan, MA ;
Orlov, AO ;
Snider, GL ;
Shur, MS .
APPLIED PHYSICS LETTERS, 1998, 72 (06) :707-709
[9]   MONTE-CARLO SIMULATION OF ELECTRON-TRANSPORT IN GALLIUM NITRIDE [J].
GELMONT, B ;
KIM, K ;
SHUR, M .
JOURNAL OF APPLIED PHYSICS, 1993, 74 (03) :1818-1821
[10]   Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia [J].
Ghosh, S. ;
Teweldebrhan, D. ;
Morales, J. R. ;
Garay, J. E. ;
Balandin, A. A. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (11)