Minimum-rank and maximum-nullity of graphs and their linear preservers

被引:0
作者
Beasley, LeRoy B. [1 ]
Song, Seok-Zun [2 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Jeju Natl Univ, Dept Math, Jeju 63243, South Korea
基金
新加坡国家研究基金会;
关键词
Minimum rank; maximum nullity; zero forcing number; clique cover number; (strong) linear preserver; vertex permutation; OPERATORS;
D O I
10.1080/03081087.2020.1775769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The minimum rank of a simple graphGis defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i not equal j) is nonzero whenever (i, j) is an edge in G and is zero otherwise. The sum of the minimum rank of a graph and its maximum nullity (similarly defined) is always the number of vertices inG. This article compares the minimum rank with the clique covering number ofGand the Boolean rank of its adjacency matrix. It does the same analysis for bipartite graphs. Finally, we investigate the linear operators on the set of graphs onnvertices that preserve the minimum rank.
引用
收藏
页码:1732 / 1743
页数:12
相关论文
共 10 条
[1]  
[Anonymous], 1991, ENCY MATH ITS APPL
[2]   Zero forcing sets and the minimum rank of graphs [J].
Barioli, Francesco ;
Barrett, Wayne ;
Butler, Steve ;
Cioaba, Sebastian M. ;
Cvetkovic, Dragos ;
Fallat, Shaun M. ;
Godsil, Chris ;
Haemers, Willem ;
Hogben, Leslie ;
Mikkelson, Rana ;
Narayan, Sivaram ;
Pryporova, Olga ;
Sciriha, Irene ;
So, Wasin ;
Stevanovic, Dragan ;
van der Holst, Hein ;
Vander Meulen, Kevin N. ;
Wehe, Amy Wangsness .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1628-1648
[3]  
Beasley L.B., 1990, Congr. Num., V70, P105
[4]   BOOLEAN-RANK-PRESERVING OPERATORS AND BOOLEAN-RANK-1 SPACES [J].
BEASLEY, LB ;
PULLMAN, NJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 59 (JUN) :55-77
[5]  
Beasley LB, ZERO FORCING NUMBER
[6]  
Bondy J.A., 2008, Springer Graduate Texts in Mathematics
[7]  
de Caen D., 1988, Proc. Fifth Carib. Conf. Combin. Comput., P120
[8]   Rank decomposition under combinatorial constraints [J].
Johnson, CR ;
Miller, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 251 :97-104
[9]  
ORLIN J, 1977, P K NED AKAD A MATH, V80, P406
[10]  
So W, 1999, LINEAR ALGEBRA APPL, V303, P461