Application of Focal Plane Directions for Estimating Ground Motion Models with General Regression Neural Networks

被引:1
作者
Wiszniowski, Jan [1 ]
机构
[1] Polish Acad Sci, Inst Geophys, Ul Ksiecia Janusza 64, PL-01452 Warsaw, Poland
关键词
Seismic hazard; ground motion model; general regression neural network; focal mechanism; metric spaces; ACCELERATION; PREDICTION; EARTHQUAKES; SEISMICITY; PGA;
D O I
10.1007/s00024-022-02975-4
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The general regression neural network (GRNN) allows testing of various events, wave paths, and site features as ground motion model (GMM) predictors. The GRNN is determined by all previous measurements, while this research aims to find the best conditional probability distribution f(X vertical bar y) of ground motion predictors given ground motion values. The f(X vertical bar y) is estimated by a kernel estimator. The GRNN was modified. Instead of the Euclidean distance of all predictors, we look for various metric spaces of predictors that minimize cross-validation error. This approach was used in the search for the GMM whose predictors include values describing focal mechanisms. Nodal plane angles were applied. GMMs containing different predictor configurations were compared. It was noticed that rake and strike nodal plane angles have an impact on the GRNN GMM while the dip angle does not. The databases of ground motions and events containing focal mechanisms, NGA-West2 and from Lubin Glogow Copper District in Poland, were used for the research.
引用
收藏
页码:1197 / 1207
页数:11
相关论文
共 25 条
[11]  
GEISSER S., 1993, PREDICTIVE INFERENCE, V55, DOI [10.1007/978-1-4899-4467-2, DOI 10.1007/978-1-4899-4467-2]
[12]   Comparison of NGA-West2 GMPEs [J].
Gregor, Nick ;
Abrahamson, Norman A. ;
Atkinson, Gail M. ;
Boore, David M. ;
Bozorgnia, Yousef ;
Campbell, Kenneth W. ;
Chiou, Brian S. -J. ;
Idriss, I. M. ;
Kamai, Ronnie ;
Seyhan, Emel ;
Silva, Walter ;
Stewart, Jonathan P. ;
Youngs, Robert .
EARTHQUAKE SPECTRA, 2014, 30 (03) :1179-1197
[13]  
JOYNER WB, 1981, B SEISMOL SOC AM, V71, P2011
[14]   3-D ROTATION OF DOUBLE-COUPLE EARTHQUAKE SOURCES [J].
KAGAN, YY .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1991, 106 (03) :709-716
[15]   Machine learning in ground motion prediction [J].
Khosravikia, Farid ;
Clayton, Patricia .
COMPUTERS & GEOSCIENCES, 2021, 148
[16]   Artificial Neural Network-Based Framework for Developing Ground-Motion Models for Natural and Induced Earthquakes in Oklahoma, Kansas, and Texas [J].
Khosravikia, Farid ;
Clayton, Patricia ;
Nagy, Zoltan .
SEISMOLOGICAL RESEARCH LETTERS, 2019, 90 (02) :604-613
[17]   Machine Learning in Seismology: Turning Data into Insights [J].
Kong, Qingkai ;
Trugman, Daniel T. ;
Ross, Zachary E. ;
Bianco, Michael J. ;
Meade, Brendan J. ;
Gerstoft, Peter .
SEISMOLOGICAL RESEARCH LETTERS, 2019, 90 (01) :3-14
[18]   IS-EPOS: a platform for anthropogenic seismicity research [J].
Leptokaropoulos, Konstantinos ;
Cielesta, Szymon ;
Staszek, Monika ;
Olszewska, Dorota ;
Lizurek, Grzegorz ;
Kocot, Joanna ;
Lasocki, Stanislaw ;
Orlecka-Sikora, Beata ;
Sterzel, Mariusz ;
Szepieniec, Tomasz .
ACTA GEOPHYSICA, 2019, 67 (01) :299-310
[19]   ESTIMATION OF A PROBABILITY DENSITY-FUNCTION AND MODE [J].
PARZEN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1065-&
[20]   Integrating Data under the European Plate Observing System from the Regional and Selected Local Seismic Networks in Poland [J].
Rudzinski, Lukasz ;
Lasocki, Stanislaw ;
Orlecka-Sikora, Beata ;
Wiszniowski, Jan ;
Olszewska, Dorota ;
Kokowski, Jakub ;
Mirek, Janusz .
SEISMOLOGICAL RESEARCH LETTERS, 2021, 92 (03) :1717-1725