ANALYTICAL SMOOTHING EFFECT OF SOLUTION FOR THE BOUSSINESQ EQUATIONS

被引:7
作者
Cheng, Feng [1 ,2 ]
Xu, Chaojiang [3 ,4 ]
机构
[1] Hubei Univ, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China
[2] Hubei Univ, Sch Math & Stat, Wuhan 430062, Hubei, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[4] Univ Rouen, Lab Math, CNRS, UMR 6085, F-76801 St Etienne Du Rouvray, France
关键词
analyticity; smoothing effect of solutions; Boussinesq equation; GEVREY CLASS REGULARITY; GLOBAL WELL-POSEDNESS; BLOW-UP CRITERION; LOCAL EXISTENCE;
D O I
10.1007/s10473-019-0114-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the analytical smoothing effect of Cauchy problem for the incompressible Boussinesq equations. Precisely, we use the Fourier method to prove that the Sobolev H-1-solution to the incompressible Boussinesq equations in periodic domain is analytic for any positive time. So the incompressible Boussinesq equations admit exactly same smoothing effect properties of incompressible Navier-Stokes equations.
引用
收藏
页码:165 / 179
页数:15
相关论文
共 25 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]  
[Anonymous], 2016, Atmosphere-Ocean Dynamics
[3]   Gevrey regularity for a class of dissipative equations with applications to decay [J].
Biswas, Animikh .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (10) :2739-2764
[4]   LARGE TIME DECAY AND GROWTH FOR SOLUTIONS OF A VISCOUS BOUSSINESQ SYSTEM [J].
Brandolese, Lorenzo ;
Schonbek, Maria E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (10) :5057-5090
[5]  
Cannon J. R., 1980, Lect. Notes in Math., V771, P129
[6]   Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equations [J].
Chae, D ;
Kim, SK ;
Nam, HS .
NAGOYA MATHEMATICAL JOURNAL, 1999, 155 :55-80
[7]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[8]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[9]   GEVREY REGULARITY WITH WEIGHT FOR INCOMPRESSIBLE EULER EQUATION IN THE HALF PLANE [J].
Cheng, Feng ;
Li, Wei-Xi ;
Xu, Chao-Jiang .
ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) :1115-1132
[10]   Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces [J].
Danchin, Raphael ;
Paicu, Marius .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (10-12) :1444-1460