The Harish-Chandra isomorphism for quantum GL2

被引:4
作者
Balagovic, Martina [1 ]
Jordan, David [2 ]
机构
[1] Newcastle Univ, Sch Math Stat & Phys, Herschel Bldg, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Double affine Hecke algebra; quantum differential operators; factorization homology; HILBERT SCHEME; HALL ALGEBRA; MODULES; CURVE;
D O I
10.4171/JNCG/300
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct an explicit Harish-Chandra isomorphism, from the quantum Hamiltonian reduction of the algebra D-q (GL(2)) of quantum differential operators on GL(2), to the spherical double affine Hecke algebra associated to GL(2). The isomorphism holds for all deformation parameters q is an element of C-x and t not equal +/- i, such that q is not a non-trival root of unity.
引用
收藏
页码:1158 / 1194
页数:37
相关论文
共 30 条
[1]  
[Anonymous], INT MATH RES NOT
[2]  
Ben-Zvi D., SEL MATH
[3]   Double affine Hecke algebras and generalized Jones polynomials [J].
Berest, Yuri ;
Samuelson, Peter .
COMPOSITIO MATHEMATICA, 2016, 152 (07) :1333-1384
[4]   DIAMOND LEMMA FOR RING THEORY [J].
BERGMAN, GM .
ADVANCES IN MATHEMATICS, 1978, 29 (02) :178-218
[5]   Fourier transform for quantum D-modules via the punctured torus mapping class group [J].
Brochier, Adrien ;
Jordan, David .
QUANTUM TOPOLOGY, 2017, 8 (02) :361-379
[6]   ON THE HALL ALGEBRA OF AN ELLIPTIC CURVE, I [J].
Burban, Igor ;
Schiffmann, Olivier .
DUKE MATHEMATICAL JOURNAL, 2012, 161 (07) :1171-1231
[7]   DOUBLE AFFINE HECKE ALGEBRAS AND MACDONALDS CONJECTURES [J].
CHEREDNIK, I .
ANNALS OF MATHEMATICS, 1995, 141 (01) :191-216
[8]   Jones Polynomials of Torus Knots via DAHA [J].
Cherednik, Ivan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (23) :5366-5425
[9]   Quantum Riemann surfaces in Chern-Simons theory [J].
Dimofte, Tudor .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 17 (03) :479-599
[10]   Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism [J].
Etingof, P ;
Ginzburg, V .
INVENTIONES MATHEMATICAE, 2002, 147 (02) :243-348