CO2 capture by pumping surface acidity to the deep ocean

被引:25
|
作者
Tyka, Michael D. [1 ]
Van Arsdale, Christopher [1 ]
Platt, John C. [1 ]
机构
[1] Google Inc, 601 N 34th St, Seattle, WA 98103 USA
关键词
NEUTRALIZATION; DISSOLUTION; CLIMATE; ALKALINIZATION; SEQUESTRATION; ACIDIFICATION; CARBONATE; REMOVAL; STORAGE; COST;
D O I
10.1039/d1ee01532j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To remain below 2 degrees C of warming, most IPCC pathways call for active CO2 removal (CDR). On geological timescales, ocean uptake regulates atmospheric CO2 concentration, with two homeostats driving CO2 uptake: dissolution of deep ocean carbonate deposits (1 ka timescales) and terrestrial weathering of silicate rocks (100 ka timescales). Many current ocean-based CDR proposals effectively act to accelerate the latter. Here we present a method which relies purely on the redistribution and dilution of acidity from a thin layer of the surface ocean to a thicker layer of deep ocean, in order to reduce surface acidification and accelerate carbonate homeostasis. This downward transport could be seen analogous to the action of the natural biological carbon pump. The method offers advantages over other ocean alkalinity and CO2-stripping methods: the conveyance of mass is minimized (acidity is pumped in situ to depth), and expensive mining, grinding and distribution of alkaline material is eliminated. No dilute substance needs to be concentrated, reducing the quantity of seawater to be processed. Finally, no terrestrial material is added to the ocean, avoiding significant alteration of seawater ion concentrations or issues with heavy metal toxicity (encountered in mineral-based alkalinity schemes). The artificial transport of acidity accelerates the natural deep ocean compensation by calcium carbonate. It has been estimated that the total compensation capacity of the ocean is on the order of 1500 GtC. We show through simulation that pumping of ocean acidity could remove up to 150 GtC from the atmosphere by 2100 without excessive increase of local pH. The permanence of the CO2 storage depends on the depth of acid pumping. At >3000 m, similar to 85% is retained for at least 300 years, and >50% for at least 2000 years. Shallow pumping (<2000 m) offers more of a stop-gap deferral of emissions for a few hundred years. Uptake efficiency and residence time also vary with the location of acidity pumping. Requiring only local resources (ocean water and energy), this method could be uniquely suited to utilize otherwise-unusable open ocean energy sources at scale. We present a brief techno-economic estimate of 130-250$ per tCO(2) at current prices and as low as 93$ per tCO(2) under modest learning-curve assumptions.
引用
收藏
页码:786 / 798
页数:13
相关论文
共 50 条
  • [21] CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions
    Hassanpouryouzband, Aliakbar
    Yang, Jinhai
    Tohidi, Bahman
    Chuvilin, Evgeny
    Istomin, Vladimir
    Bukhanov, Boris
    Cheremisin, Alexey
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (07) : 4324 - 4330
  • [22] Effects of Direct Ocean CO2 Injection on Deep-Sea Meiofauna
    James P. Barry
    Kurt R. Buck
    Chris F. Lovera
    Linda Kuhnz
    Patrick J. Whaling
    Edward T. Peltzer
    Peter Walz
    Peter G. Brewer
    Journal of Oceanography, 2004, 60 : 759 - 766
  • [23] Storage of CO2 as hydrate beneath the ocean floor
    Qanbari, Farhad
    Pooladi-Darvish, Mehran
    Tabatabaie, S. Hamed
    Gerami, Shahab
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 3997 - 4004
  • [24] Potential volume for CO2 deep ocean sequestration: an assessment of the area located on western Pacific Ocean
    Shih, David Ching-Fang
    Wu, Yih-Min
    Hu, Jyr-Ching
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2010, 24 (05) : 705 - 711
  • [25] Efficiency Improvement of CO2 Capture
    Nagy, Tibor
    Koczka, Katalin
    Haaz, Eniko
    Toth, Andras Jozsef
    Racz, Laszlo
    Mizsey, Peter
    PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING, 2017, 61 (01) : 51 - 58
  • [26] CO2 capture and electrochemical conversion
    Reis Machado, Ana S.
    da Ponte, Manuel Nunes
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2018, 11 : 86 - 90
  • [27] Aminosilicone Solvents for CO2 Capture
    Perry, Robert J.
    Grocela-Rocha, Teresa A.
    O'Brien, Michael J.
    Genovese, Sarah
    Wood, Benjamin R.
    Lewis, Larry N.
    Lam, Hubert
    Soloveichik, Grigorii
    Rubinsztajn, Malgorzata
    Kniajanski, Sergei
    Draper, Sam
    Enick, Robert M.
    Johnson, J. Karl
    Xie, Hong-bin
    Tapriyal, Deepak
    CHEMSUSCHEM, 2010, 3 (08) : 919 - 930
  • [28] Rock 'n' use of CO2: carbon footprint of carbon capture and utilization by mineralization
    Ostovari, Hesam
    Sternberg, Andre
    Bardow, Andre
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (09): : 4482 - 4496
  • [29] Technologies for CO2 capture and disposal
    Chen, CM
    Zhao, CS
    Han, S
    COAL COMBUSTION FACING THE 21ST CENTURY, 2003, : 555 - 558
  • [30] CO2 dissolution in the presence of background flow of deep saline aquifers
    Emami-Meybodi, Hamid
    Hassanzadeh, Hassan
    Ennis-King, Jonathan
    WATER RESOURCES RESEARCH, 2015, 51 (04) : 2595 - 2615