共 60 条
Pioglitazone Ameliorates Acute Endotoxemia-Induced Acute on Chronic Renal Dysfunction in Cirrhotic Ascitic Rats
被引:6
作者:
Liu, Szu-Yu
[1
,2
,3
]
Huang, Chia-Chang
[1
,2
,3
]
Huang, Shiang-Fen
[2
,3
]
Liao, Tsai-Ling
[3
,4
]
Kuo, Nai-Rong
[1
,2
,3
]
Yang, Ying-Ying
[1
,2
,3
]
Li, Tzu-Hao
[3
,5
]
Liu, Chih-Wei
[3
]
Hou, Ming-Chih
[2
,3
]
Lin, Han-Chieh
[2
,3
]
机构:
[1] Taipei Vet Gen Hosp, Dept Med Educ, Med Innovat & Res Off MIRO, Taipei 11217, Taiwan
[2] Taipei Vet Gen Hosp, Dept Med, Taipei 11217, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Fac Med, Sch Med, Taipei 11217, Taiwan
[4] Taichung Vet Gen Hosp, Dept Med Res, Taichung 11217, Taiwan
[5] Shin Kong Wu Ho Mem Fdn, Dept Internal Med, Div Allergy Immunol & Rheumatol, Taipei 11217, Taiwan
来源:
关键词:
endotoxemia;
lipopolysaccharide;
pioglitazone;
cirrhosis;
PPAR gamma;
TNF alpha;
ACTIVATED-RECEPTOR-GAMMA;
TUMOR-NECROSIS-FACTOR;
CHRONIC KIDNEY-DISEASE;
FATTY LIVER-DISEASE;
NF-KAPPA-B;
MACROPHAGE POLARIZATION;
PPAR-GAMMA;
INFLAMMATION;
INJURY;
EXPRESSION;
D O I:
10.3390/cells10113044
中图分类号:
Q2 [细胞生物学];
学科分类号:
071009 ;
090102 ;
摘要:
Endotoxemia-activated tumor necrosis factor (TNF alpha)/nuclear factor kappa B (NF kappa B) signals result in acute on chronic inflammation-driven renal dysfunction in advanced cirrhosis. Systemic activation of peroxisome proliferator-activated receptor gamma (PPAR gamma) with pioglitazone can suppress inflammation-related splanchnic and pulmonary dysfunction in cirrhosis. This study explored the mechanism and effects of pioglitazone treatment on the abovementioned renal dysfunction in cirrhotic rats. Cirrhotic ascitic rats were induced with renal dysfunction by bile duct ligation (BDL). Then, 2 weeks of pioglitazone treatment (Pio, PPAR gamma agonist, 12 mg/kg/day, using the azert osmotic pump) was administered from the 6th week after BDL. Additionally, acute lipopolysaccharide (LPS, Escherichia coli 0111:B4; Sigma, 0.1 mg/kg b.w, i.p. dissolved in NaCl 0.9%) was used to induce acute renal dysfunction. Subsequently, various circulating, renal arterial and renal tissue pathogenic markers were measured. Cirrhotic BDL rats are characterized by decreased mean arterial pressure, increased cardiac output and portal venous pressure, reduced renal arterial blood flow (RABF), increased renal vascular resistance (RVR), increased relative renal weight/hydroxyproline, downregulated renal PPAR gamma expression, upregulated renal inflammatory markers (TNF alpha, NF kappa B, IL-6, MCP-1), increased adhesion molecules (VCAM-1 and ICAM-1), increased renal macrophages (M1, CD68), and progressive renal dysfunction (increasing serum and urinary levels of renal injury markers (lipocalin-2 and IL-18)). In particular, acute LPS administration induces acute on chronic renal dysfunction (increasing serum BUN/creatinine, increasing RVR and decreasing RABF) by increased TNF alpha-NF kappa B-mediated renal inflammatory markers as well as renal M1 macrophage infiltration. In comparison with the BDL+LPS group, chronic pioglitazone pre-treatment prevented LPS-induced renal pathogenic changes in the BDL-Pio+LPS group. Activation of systemic, renal vessel and renal tissue levels of PPAR gamma by chronic pioglitazone treatment has beneficial effects on the endotoxemia-related TNF alpha/NF kappa B-mediated acute and chronic renal inflammation in cirrhosis. This study revealed that normalization of renal and renal arterial levels of PPAR gamma effectively prevented LPS-induced acute and chronic renal dysfunction in cirrhotic ascitic rats.
引用
收藏
页数:15
相关论文