Univoque bases and Hausdorff dimension

被引:10
作者
Kong, Derong [1 ,2 ]
Li, Wenxia [3 ]
Lu, Fan [4 ]
de Vries, Martijn [5 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[2] Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
[3] East China Normal Univ, Dept Math, Shanghai Key Lab PMMP, Shanghai 200062, Peoples R China
[4] Sichuan Normal Univ, Dept Math, Chengdu 610068, Sichuan, Peoples R China
[5] Tussen Grachten 213, NL-1381 DZ Weesp, Netherlands
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 184卷 / 03期
关键词
Univoque bases; Univoque sets; Hausdorff dimensions; Generalized Thue-Morse sequences; UNIQUE EXPANSIONS; SETS;
D O I
10.1007/s00605-017-1047-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a positive integer M and a real number , a q -expansion of a real number x is a sequence with such that x = Sigma(infinity)(i=1)c(i)q(-i) It is well known that if , then each has a q-expansion. Let be the set of univoque bases for which 1 has a unique q-expansion. The main object of this paper is to provide new characterizations of and to show that the Hausdorff dimension of the set of numbers with a unique q-expansion changes the most if q "crosses" a univoque base. Denote by the set of such that there exist numbers having precisely two distinct q-expansions. As a by-product of our results, we obtain an answer to a question of Sidorov (J Number Theory 129:741-754, 2009) and prove that dimH(B-2 boolean AND (q ', q ' + delta)) > 0 for any delta > 0, where is the Komornik-Loreti constant.
引用
收藏
页码:443 / 458
页数:16
相关论文
共 26 条
[1]  
Allouche J.-P., 1998, SPRINGER SER DISCRET, P1, DOI DOI 10.1007/978-1-4471-0551-0_1
[2]  
ALLOUCHE JP, 1983, CR ACAD SCI I-MATH, V296, P159
[3]  
[Anonymous], 2014, Integers
[4]  
[Anonymous], 1990, FRACTAL GEOMETRY
[5]  
[Anonymous], 2002, Period. Math. Hungar.
[6]  
Baiocchi C., 2007, ARXIV07103001V1
[7]  
DAROCZY Z, 1995, PUBL MATH-DEBRECEN, V46, P385
[8]  
DAROCZY Z, 1993, PUBL MATH-DEBRECEN, V42, P397
[9]   Topology of the set of univoque bases [J].
de Vries, Martijn ;
Komornik, Vilmos ;
Loreti, Paola .
TOPOLOGY AND ITS APPLICATIONS, 2016, 205 :117-137
[10]   On the number of unique expansions in non-integer bases [J].
de Vries, Martijn .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (03) :652-657