A method for obtaining iterative formulas of order three

被引:14
作者
Chun, Changbum [1 ]
机构
[1] Korea Univ Technol & Educ, Sch Liberals Arts, Cheonan 330708, Chungnam, South Korea
关键词
Newton's method; Newton-type method; iterative methods; iteration function; nonlinear equations; order of convergence;
D O I
10.1016/j.aml.2006.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An improved method for the order of convergence of iterative formulas of order two is given. Using this method, new third-order modifications of Newton's method are derived. A comparison with other methods is given. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1103 / 1109
页数:7
相关论文
共 19 条
[1]   Modified homotopy perturbation method for nonlinear equations and comparison with Adomian decomposition method [J].
Abbasbandy, S .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) :431-438
[2]   Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method [J].
Abbasbandy, S .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) :887-893
[3]  
[Anonymous], 1984, RES NOTES MATH
[4]   HALLEYS VARIATION OF NEWTONS METHOD [J].
BROWN, GH .
AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (09) :726-728
[5]   Iterative methods improving Newton's method by the decomposition method [J].
Chun, C .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (10-12) :1559-1568
[6]   Construction of Newton-like iteration methods for solving nonlinear equations [J].
Chun, Changbum .
NUMERISCHE MATHEMATIK, 2006, 104 (03) :297-315
[7]   Some variant of Newton's method with third-order convergence [J].
Frontini, M ;
Sormani, E .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 140 (2-3) :419-426
[8]   ON HALLEY ITERATION METHOD [J].
GANDER, W .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02) :131-134
[9]  
Halley E., 1694, Philos. Trans. Roy. Soc, V18, P136, DOI [DOI 10.1098/RSTL.1694.0029, 10.1098/rstl.1694.0029]
[10]  
He J., 1998, Commun. Nonlinear Sci. Numer. Simulat, V3, P106, DOI [10.1016/S1007-5704(98)90073-9, DOI 10.1016/S1007-5704(98)90073-9]