Enhanced Environmental Stability Coupled with a 12.5% Power Conversion Efficiency in an Aluminum Oxide-Encapsulated n-Graphene/p-Silicon Solar Cell

被引:17
作者
Yavuz, Serdar [1 ]
Loran, Erick M. [2 ]
Sarkar, Nirjhar [1 ]
Fenning, David P. [2 ]
Bandaru, Prabhakar R. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Mech Engn, Mat Sci & Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
graphene; solar cell; Schottky junction; n-doping; stability; Raman spectroscopy; aluminum oxide; FIELD-EFFECT TRANSISTORS; WORK-FUNCTION; HIGH-PERFORMANCE; LAYER; FILMS; ANTIREFLECTION; DEPENDENCE; SCATTERING; TRANSPORT; PARAMETERS;
D O I
10.1021/acsami.8b16322
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A significant improvement in the power conversion efficiency (PCE) and the environmental stability of n-Graphene/p-Si solar cells is indicated through effective n-doping of graphene, using low work function oxide capping layers. AlOx, deposited through atomic layer deposition, is particularly effective for such doping and in addition serves as an antireflection coating and a cell encapsulating layer. It is shown that the related charge transfer doping and interfacial engineering was crucial to achieve a record PCE of 12.5%. The work indicates a path forward, through work function engineering, for further efficiency gains in Gr-based solar cells.
引用
收藏
页码:37181 / 37187
页数:7
相关论文
共 56 条
  • [1] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
  • [2] Doping Dependence of the Raman Spectrum of Defected Graphene
    Bruna, Matteo
    Ott, Anna K.
    Ijaes, Mari
    Yoon, Duhee
    Sassi, Ugo
    Ferrari, Andrea C.
    [J]. ACS NANO, 2014, 8 (07) : 7432 - 7441
  • [3] Graphene Anodes and Cathodes: Tuning the Work Function of Graphene by Nearly 2 eV with an Aqueous Intercalation Process
    Chang, Jan-Kai
    Lin, Wei-Hsiang
    Taur, Jieh-I
    Chen, Ting-Hao
    Liao, Guo-Kai
    Pi, Tun-Wen
    Chen, Mei-Hsin
    Wu, Chih-I
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (31) : 17155 - 17161
  • [4] Charged-impurity scattering in graphene
    Chen, J. -H.
    Jang, C.
    Adam, S.
    Fuhrer, M. S.
    Williams, E. D.
    Ishigami, M.
    [J]. NATURE PHYSICS, 2008, 4 (05) : 377 - 381
  • [5] EXTRACTION OF SCHOTTKY DIODE PARAMETERS FROM FORWARD CURRENT-VOLTAGE CHARACTERISTICS
    CHEUNG, SK
    CHEUNG, NW
    [J]. APPLIED PHYSICS LETTERS, 1986, 49 (02) : 85 - 87
  • [6] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215
  • [7] Electronic transport in two-dimensional graphene
    Das Sarma, S.
    Adam, Shaffique
    Hwang, E. H.
    Rossi, Enrico
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (02) : 407 - 470
  • [8] Tunnel oxide passivated contacts as an alternative to partial rear contacts
    Feldmann, Frank
    Bivour, Martin
    Reichel, Christian
    Steinkemper, Heiko
    Herm, Martin
    Glunz, Stefan W.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 131 : 46 - 50
  • [9] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [10] Practical Chemical Sensors from Chemically Derived Graphene
    Fowler, Jesse D.
    Allen, Matthew J.
    Tung, Vincent C.
    Yang, Yang
    Kaner, Richard B.
    Weiller, Bruce H.
    [J]. ACS NANO, 2009, 3 (02) : 301 - 306