Uniqueness of Radial Solutions for the Fractional Laplacian

被引:339
作者
Frank, Rupert L. [1 ]
Lenzmann, Enno [2 ]
Silvestre, Luis [3 ]
机构
[1] CALTECH, Math 253 37, Pasadena, CA 91125 USA
[2] Univ Basel, Dept Math & Comp Sci, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Univ Chicago, Dept Math, 5734 S Univ Ave,Off Ry 360-E, Chicago, IL 60637 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
GROUND-STATES; POSITIVE SOLUTIONS; CAUCHY PROCESS; BLOW-UP; EQUATIONS; REGULARITY; STABILITY; OPERATORS; SPACE;
D O I
10.1002/cpa.21591
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (-)(s) with s(0,1) for any space dimensions N1. By extending a monotonicity formula found by Cabre and Sire , we show that the linear equation has at most one radial and bounded solution vanishing at infinity, provided that the potential V is radial and nondecreasing. In particular, this result implies that all radial eigenvalues of the corresponding fractional Schrodinger operator H = (-)(s)+V are simple. Furthermore, by combining these findings on linear equations with topological bounds for a related problem on the upper half-space +N+1, we show uniqueness and nondegeneracy of ground state solutions for the nonlinear equation for arbitrary space dimensions N1 and all admissible exponents >0. This generalizes the nondegeneracy and uniqueness result for dimension N = 1 recently obtained by the first two authors and, in particular, the uniqueness result for solitary waves of the Benjamin-Ono equation found by Amick and Toland .(c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:1671 / 1726
页数:56
相关论文
共 39 条
[1]   NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES [J].
ABDELOUHAB, L ;
BONA, JL ;
FELLAND, M ;
SAUT, JC .
PHYSICA D, 1989, 40 (03) :360-392
[2]   Model equations for waves in stratified fluids [J].
Albert, JP ;
Bona, JL ;
Saut, JC .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1961) :1233-1260
[3]   ELLIPTIC-EQUATIONS IN DIVERGENCE FORM, GEOMETRIC CRITICAL-POINTS OF SOLUTIONS, AND STEKLOFF EIGENFUNCTIONS [J].
ALESSANDRINI, G ;
MAGNANINI, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (05) :1259-1268
[4]   UNIQUENESS AND RELATED ANALYTIC PROPERTIES FOR THE BENJAMIN-ONO-EQUATION - A NONLINEAR NEUMANN PROBLEM IN THE PLANE [J].
AMICK, CJ ;
TOLAND, JF .
ACTA MATHEMATICA, 1991, 167 (1-2) :107-126
[5]  
[Anonymous], 1969, TEOR VEROJATNOST PRI
[6]  
[Anonymous], REV MAT IBE IN PRESS
[7]   The Cauchy process and the Steklov problem [J].
Bañuelos, R ;
Kulczycki, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (02) :355-423
[8]  
Blumenthal RM., 1960, T AM MATH SOC, V95, P263, DOI [DOI 10.1090/S0002-9947-1960-0119247-6, 10.1090/S0002-9947-1960-0119247-6]
[9]   Rearrangement inequalities for functionals with monotone integrands [J].
Burchard, A ;
Hajaiej, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (02) :561-582
[10]   Layer solutions in a half-space for boundary reactions [J].
Cabré, X ;
Solà-Morales, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1678-1732