Adaptive Blind Equalization in Impulsive Noise

被引:3
作者
Abrar, Shafayat [1 ]
Zerguine, Azzedine [2 ]
Abed-Meraim, Karim [3 ]
机构
[1] Habib Univ, DSSE, Karachi 75290, Pakistan
[2] KFUPM, Elect Engn Dept, Dhahran 31261, Saudi Arabia
[3] Univ Orleans, PRISME Lab, F-45072 Orleans, France
来源
2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS | 2020年
关键词
adaptive filter; blind equalization; generalized Gaussian distribution; impulsive noise; maximal invariance; ALGORITHM; SYSTEMS;
D O I
10.1109/IEEECONF51394.2020.9443289
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work investigates the problem of blind channel equalization in the presence of burst noise. Modeling impulsive noise distribution as generalized-Gaussian, we derive an appropriate criterion for blind equalization. Our method exploits Wijsman's theorem and develops a maximal-invariant test of equally-likely pulsed signals against impulsive disturbance. We optimize the test and realize an adaptive equalizer, capable of not only mitigating intersymbol interference but also robust to impulsive disturbance. Numerical simulations, obtained on a baseband digital microwave radio system for amplitude-phase shift keying signaling in additive (generalized Gaussian and symmetric-alpha stable) impulsive environment, confirm the admissibility of the proposed equalizer in terms of robustness and steady convergence.
引用
收藏
页码:1415 / 1419
页数:5
相关论文
共 25 条
[1]  
Algazi V., 1964, BINARY DETECTION WHI
[2]   Newton-like minimum entropy equalization algorithm for APSK systems [J].
Ali, Anum ;
Abrar, Shafayat ;
Zerguine, Azzedine ;
Nandi, Asoke K. .
SIGNAL PROCESSING, 2014, 101 :74-86
[3]  
Dytso A., 2018, Journal of Statistical Distributions and Applications, V5, P6, DOI 10.1186/s40488-018-0088-5
[4]   A q-Gaussian Maximum Correntropy Adaptive Filtering Algorithm for Robust Spare Recovery in Impulsive Noise [J].
Gao, Le ;
Li, Xifeng ;
Bi, Dongjie ;
Xie, Yongle .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (12) :1770-1774
[5]  
Gray W, 1978, STANFORD EXPLORATION, P181
[6]  
Haykin S., 1994, BLIND DECONVOLUTION
[7]   A family of robust adaptive filtering algorithms based on sigmoid cost [J].
Huang, Fuyi ;
Zhang, Jiashu ;
Zhang, Sheng .
SIGNAL PROCESSING, 2018, 149 :179-192
[8]   NLMS Algorithm Based on a Variable Parameter Cost Function Robust Against Impulsive Interferences [J].
Huang, Fuyi ;
Zhang, Jiashu ;
Zhang, Sheng .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (05) :600-604
[9]   Robust Sparse Recovery in Impulsive Noise via Continuous Mixed Norm [J].
Javaheri, Amirhossein ;
Zayyani, Hadi ;
Figueiredo, Mario A. T. ;
Marvasti, Farrokh .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (08) :1146-1150
[10]  
Johnson DonH., Signal processing information databse