On the reverse Orlicz Busemann-Petty centroid inequality

被引:44
作者
Chen, Fangwei [1 ]
Zhou, Jiazu [2 ]
Yang, Congli [3 ]
机构
[1] Guizhou Coll Finance & Econ, Dept Math & Stat, Guiyang 550004, Guizhou, Peoples R China
[2] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[3] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Guizhou, Peoples R China
关键词
Orlicz centroid body; Orlicz centroid Busemann-Petty inequality; The shadow system; The parallel chord movement; AFFINE ISOPERIMETRIC-INEQUALITIES; MINKOWSKI-FIREY THEORY; BODIES;
D O I
10.1016/j.aam.2011.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Orlicz centroid body, defined by E. Lutwak, D. Yang and G. Zhang, and the extrema of some affine invariant functionals involving the volume of the Orlicz centroid body are investigated. The reverse form of the Orlicz Busemann-Petty centroid inequalities is obtained in the two-dimensional case. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:820 / 828
页数:9
相关论文
共 24 条
[1]  
Bisztriczky T, 2001, MATHEMATIKA, V48, P1
[2]   A CLASS OF CONVEX BODIES [J].
BOLKER, ED .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :323-&
[3]   On the reverse Lp-Busemann-Petty centroid inequality [J].
Campi, S ;
Gronchi, P .
MATHEMATIKA, 2002, 49 (97-98) :1-11
[4]   The Lp-Busemann-Petty centroid inequality [J].
Campi, S ;
Gronchi, P .
ADVANCES IN MATHEMATICS, 2002, 167 (01) :128-141
[5]  
Gardner R.J., 1995, Geometric Tomography
[6]   The Brunn-Minkowski inequality [J].
Gardner, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :355-405
[7]   The even Orlicz Minkowski problem [J].
Haberl, Christoph ;
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
ADVANCES IN MATHEMATICS, 2010, 224 (06) :2485-2510
[8]  
Haberl C, 2009, J DIFFER GEOM, V83, P1
[9]   Asymmetric affine Lp Sobolev inequalities [J].
Haberl, Christoph ;
Schuster, Franz E. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (03) :641-658
[10]  
Leichtweiβ K., 1998, AFFINE GEOMETRY CONV