Identity based signature scheme based on cubic residues

被引:14
作者
Xing DongSheng [1 ]
Cao ZhenFu [1 ]
Dong XiaoLei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Eisenstein ring; identity based signature; cubic residue; factoring; random oracle; proven security;
D O I
10.1007/s11432-011-4413-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel method to compute a cubic root of a cubic residue in Eisenstein ring. By applying our method, a new identity based signature scheme is proposed based on cubic residues. We formally prove that our scheme is secure against existential forgery on the adaptive chosen message and identity attacks assuming the hardness of factoring. Our scheme is the first identity based signature scheme based on cubic residues.
引用
收藏
页码:2001 / 2012
页数:12
相关论文
共 12 条
[1]  
Abdalla M, 2000, LECT NOTES COMPUT SC, V1976, P116
[2]  
[Anonymous], ADV CRYPTOLOGY CRYPT
[3]  
Cao Z, 1988, P 3 CHINESE C SOURCE, P178
[4]  
CAO ZF, 1993, PUBLIC KEY CRYPTOGRA
[5]   Identity-based signature scheme based on quadratic residues [J].
Chai ZhenChuan ;
Cao ZhenFu ;
Dong XiaoLei .
SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2007, 50 (03) :373-380
[6]   Efficient algorithms for the gcd and cubic residuosity in the ring of Eisenstein integers [J].
Damgård, IB ;
Frandsen, GS .
JOURNAL OF SYMBOLIC COMPUTATION, 2005, 39 (06) :643-652
[7]  
Goldwasser S., 1982, P 14 ANN ACM S THEOR, P365, DOI DOI 10.1145/800070.802212
[8]   Security arguments for digital signatures and blind signatures [J].
Pointcheval, D ;
Stern, J .
JOURNAL OF CRYPTOLOGY, 2000, 13 (03) :361-396
[9]  
Pointcheval D, 1996, LECT NOTES COMPUT SC, V1070, P387
[10]  
Rabin M. O, 1979, TR212 MIT