Fuelling efficiency of massive gas injection in TEXTOR: mass scaling and importance of gas flow dynamics

被引:22
作者
Bozhenkov, S. A. [1 ]
Lehnen, M. [2 ]
Finken, K. H. [2 ]
Bertschinger, G. [2 ]
Koslowski, H. R. [2 ]
Reiter, D. [2 ]
Wolf, R. C.
机构
[1] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
[2] Forschungszentrum Julich, Inst Energy Res Plasma Phys, EURATOM Assoc, D-52425 Julich, Germany
关键词
RUNAWAY CURRENT TERMINATION; LOW-DENSITY PLASMA; DISRUPTION MITIGATION; PROFILE MEASUREMENTS; TOKAMAK DISCHARGES; OPERATIONAL LIMITS; ELECTRON-DENSITY; MHD STABILITY; CHAPTER; JT-60U;
D O I
10.1088/0029-5515/51/8/083033
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fuelling efficiency is an important parameter in designing a massive gas injection system for suppression of runaway electrons in ITER. In this work Z-dependence of fuelling efficiency is measured for TEXTOR. The dependence covers the following gases: He, Ne, Ar, Kr, Xe and a 10% Ar-D2 mixture. It is shown that the fuelling efficiency significantly decreases with the gas mass, from above 0.5 for He to below 0.03 for Xe. To explain the variation of the efficiency with the gas mass and pressure a simple model of gas flow from the valve to the plasma edge is developed. The flow model is validated using available laboratory flow measurements of a TEXTOR-like injection system. An unsteady gas flow and a premature plasma disruption are shown to explain the mass dependence of the efficiency.
引用
收藏
页数:10
相关论文
共 43 条
[1]   Pellet fuelling, ELM pacing and disruption mitigation technology development for ITER [J].
Baylor, L. R. ;
Combs, S. K. ;
Foust, C. R. ;
Jernigan, T. C. ;
Meitner, S. J. ;
Parks, P. B. ;
Caughman, J. B. ;
Fehling, D. T. ;
Maruyama, S. ;
Qualls, A. L. ;
Rasmussen, D. A. ;
Thomas, C. E. .
NUCLEAR FUSION, 2009, 49 (08)
[2]   Main characteristics of the fast disruption mitigation valve [J].
Bozhenkov, S. A. ;
Finken, K. -H. ;
Lehnen, M. ;
Wolf, R. C. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (03)
[3]   Generation and suppression of runaway electrons in disruption mitigation experiments in TEXTOR [J].
Bozhenkov, S. A. ;
Lehnen, M. ;
Finken, K. H. ;
Jakubowski, M. W. ;
Wolf, R. C. ;
Jaspers, R. ;
Kantor, M. ;
Marchuk, O. V. ;
Uzgel, E. ;
VanWassenhove, G. ;
Zimmermann, O. ;
Reiter, D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (10)
[4]  
Bozhenkov S.A., 2008, 35 EPS PLASM PHYS C, pP
[5]   RELATIVISTIC LIMITATIONS ON RUNAWAY ELECTRONS [J].
CONNOR, JW ;
HASTIE, RJ .
NUCLEAR FUSION, 1975, 15 (03) :415-424
[6]  
Courant R., 1999, Supersonic Flow and Shock Waves
[7]   A new disruption mitigation valve (DMV) and gas flow in guiding tubes of different diameter [J].
Finken, K. H. ;
Lehnen, M. ;
Bozhenkov, S. A. .
NUCLEAR FUSION, 2011, 51 (03)
[8]   Gas flow analysis of a disruption mitigation valve (DMV) [J].
Finken, K. H. ;
Lehnen, M. ;
Bozhenkov, S. A. .
NUCLEAR FUSION, 2008, 48 (11)
[9]   Ionization state distribution and radiative cooling rate for argon in a low-density plasma [J].
Fournier, KB ;
Cohen, M ;
May, MJ ;
Goldstein, WH .
ATOMIC DATA AND NUCLEAR DATA TABLES, 1998, 70 (02) :231-254
[10]  
Fournier KB, 2000, ATOM DATA NUCL DATA, V74, P333