High-dimensional random geometric graphs and their clique number

被引:36
作者
Devroye, Luc [1 ]
Gyoergy, Andras [2 ]
Lugosi, Gabor [3 ]
Udina, Frederic [3 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
[2] Hungarian Acad Sci, Machine Learning Res Grp, Comp & Automat Res Inst, H-1111 Budapest, Hungary
[3] Pompeu Fabra Univ, Dept Econ, Barcelona 08005, Spain
关键词
Clique number; dependency testing; geometric graphs; random graphs;
D O I
10.1214/EJP.v16-967
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the behavior of random geometric graphs in high dimensions. We show that as the dimension grows, the graph becomes similar to an Erdos-Renyi random graph. We pay particular attention to the clique number of such graphs and show that it is very close to that of the corresponding Erdos-Renyi graph when the dimension is larger than log(3) n where n is the number of vertices. The problem is motivated by a statistical problem of testing dependencies..
引用
收藏
页码:2481 / 2508
页数:28
相关论文
共 19 条
[1]  
Alon N, 1998, RANDOM STRUCT ALGOR, V13, P457, DOI 10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO
[2]  
2-W
[3]  
Alon Noga, 1992, The Probabilistic Method
[4]  
Ane C., 2000, INEGALITES SOBOLEV L
[5]  
[Anonymous], 1985, Graphical Evolution
[6]  
[Anonymous], 2003, OXFORD STUDIES PROBA
[7]  
[Anonymous], LECT NOTES MATH
[8]  
[Anonymous], 1998, Random graphs
[9]   On the dependence of the Berry-Esseen bound on dimension [J].
Bentkus, V .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 113 (02) :385-402
[10]   Deterministic and randomized polynomial-time approximation of radii [J].
Brieden, A ;
Gritzmann, P ;
Kannan, R ;
Klee, V ;
Lovász, L ;
Simonovits, M .
MATHEMATIKA, 2001, 48 (95-96) :63-105