Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: molecular basis for imine macrocyclization

被引:82
作者
Becker, JE
Moore, RE
Moore, BS
机构
[1] Univ Arizona, Coll Pharm, Div Med Chem, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA
[3] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA
关键词
nonribosomal peptide synthetase; 4-methylproline; cyanobacteria; cyclic peptide; reductase;
D O I
10.1016/j.gene.2003.09.034
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Nostocyclopeptides A1 and A2 are novel cyclic heptapeptides produced by the terrestrial cyanobacterium Nostoc sp. ATCC53789 that possess a unique imino linkage in the macrocyclic ring. Herein we report the cloning, sequencing, annotation, and biochemical analysis of the 33-kb nostocyclopeptide (ncp) biosynthetic gene cluster, which includes seven open reading frames predicted to be involved in the biosynthesis and transport of these natural products. The genetic architecture and domain organization of the ncpA-B nonribosomal peptide synthetase (NRPS) is co-linear in arrangement with respect to the putative order of the biosynthetic assembly of the cyclic peptide. A reductase domain identified at the C-terminal end of the NRPS NcpB is predicted to catalyze an NAD(P)H-mediated hydride transfer to the heptapeptidyl-S-enzyme intermediate NH2-Tyr-Gly-DGln-Ile-Ser-mPro-Leu/Phe-S-NRPS to yield a linear heptapeptide aldehyde that is subsequently captured intramolecularly with the amino group of the N-terminal amino acid residue tyrosine to form a stable imine bond. While a few C-terminal reductases associated with NRPPSs have been identified, the ncp reductase is the first to mediate imine macrocyclization involving peptide N- and C-termini. Biochemical analysis of the NcpA1 and NcpB1 adenylation domains coupled with the recent characterization of the (2S,4S)-5-hydroxyleucine dehydrogenase NcpD, which is involved in the biosynthesis of the nonproteinogenic amino acid residue L-4-methylproline from L-leucine, support the involvement of this cluster in nostocyclopeptide biosynthesis. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 33 条
[1]  
[Anonymous], 1988, METHOD ENZYMOL
[2]   Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis [J].
Billman-Jacobe, H ;
McConville, MJ ;
Haites, RE ;
Kovacevic, S ;
Coppel, RL .
MOLECULAR MICROBIOLOGY, 1999, 33 (06) :1244-1253
[3]   ANALYSIS OF A HET(-) MUTATION IN ANABAENA SP STRAIN PCC-7120 IMPLICATES A SECONDARY METABOLITE IN THE REGULATION OF HETEROCYST SPACING [J].
BLACK, TA ;
WOLK, CP .
JOURNAL OF BACTERIOLOGY, 1994, 176 (08) :2282-2292
[4]   Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR [J].
Bourne, DG ;
Riddles, P ;
Jones, GJ ;
Smith, W ;
Blakeley, RL .
ENVIRONMENTAL TOXICOLOGY, 2001, 16 (06) :523-534
[5]   Marine cyanobacteria - a prolific source of natural products [J].
Burja, AM ;
Banaigs, B ;
Abou-Mansour, E ;
Burgess, JG ;
Wright, PC .
TETRAHEDRON, 2001, 57 (46) :9347-9377
[6]   Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains [J].
Challis, GL ;
Ravel, J ;
Townsend, CA .
CHEMISTRY & BIOLOGY, 2000, 7 (03) :211-224
[7]   The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit [J].
Chang, ZX ;
Flatt, P ;
Gerwick, WH ;
Nguyen, VA ;
Willis, CL ;
Sherman, DH .
GENE, 2002, 296 (1-2) :235-247
[8]   Microcystin biosynthesis in Planktothrix:: Genes, evolution, and manipulation [J].
Christiansen, G ;
Fastner, J ;
Erhard, M ;
Börner, T ;
Dittmann, E .
JOURNAL OF BACTERIOLOGY, 2003, 185 (02) :564-572
[9]   Lysine biosynthesis in Saccharomyces cerevisiae:: Mechanism of α-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5 [J].
Ehmann, DE ;
Gehring, AM ;
Walsh, CT .
BIOCHEMISTRY, 1999, 38 (19) :6171-6177
[10]   In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15:: Biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases [J].
Gaitatzis, N ;
Kunze, B ;
Müller, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) :11136-11141