MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning

被引:13
作者
Luo, Yi [1 ]
Bag, Saientan [2 ]
Zaremba, Orysia [3 ]
Cierpka, Adrian [4 ]
Andreo, Jacopo [3 ]
Wuttke, Stefan [3 ,5 ]
Friederich, Pascal [2 ,4 ]
Tsotsalas, Manuel [1 ,6 ]
机构
[1] Karlsruhe Inst Technol, Inst Funct Interfaces, Herman von Helmholtz Pl, D-76344 Eggenstein Leopoldshafen, Germany
[2] Karlsruhe Inst Technol, Inst Nanotechnol, Herman von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Basque Ctr Mat Applicat & Nanostruct, Edif Martina Casiano,Pl 3 Parque Cient UPV EHU, Leioa 48940, Bizkaia, Spain
[4] Karlsruhe Inst Technol, Inst Theoret Informat, Fasanengarten 5, D-76131 Karlsruhe, Germany
[5] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
[6] Karlsruhe Inst Technol, Inst Organ Chem, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
Data Mining; Machine Learning; Metal-Organic Frameworks; Microporous Materials; Synthesis Prediction;
D O I
10.1002/anie.202200242
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite rapid progress in the field of metal-organic frameworks (MOFs), the potential of using machine learning (ML) methods to predict MOF synthesis parameters is still untapped. Here, we show how ML can be used for rationalization and acceleration of the MOF discovery process by directly predicting the synthesis conditions of a MOF based on its crystal structure. Our approach is based on: i) establishing the first MOF synthesis database via automatic extraction of synthesis parameters from the literature, ii) training and optimizing ML models by employing the MOF database, and iii) predicting the synthesis conditions for new MOF structures. The ML models, even at an initial stage, exhibit a good prediction performance, outperforming human expert predictions, obtained through a synthesis survey. The automated synthesis prediction is available via a web-tool on .
引用
收藏
页数:5
相关论文
共 34 条
[1]   Design of Metal-Organic Framework Templated Materials Using High-Throughput Computational Screening [J].
Ahmad, Momin ;
Luo, Yi ;
Woell, Christof ;
Tsotsalas, Manuel ;
Schug, Alexander .
MOLECULES, 2020, 25 (21)
[2]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[3]   Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019 [J].
Chung, Yongchul G. ;
Haldoupis, Emmanuel ;
Bucior, Benjamin J. ;
Haranczyk, Maciej ;
Lee, Seulchan ;
Zhang, Hongda ;
Vogiatzis, Konstantinos D. ;
Milisavljevic, Marija ;
Ling, Sanliang ;
Camp, Jeffrey S. ;
Slater, Ben ;
Siepmann, J. Ilja ;
Sholl, David S. ;
Snurr, Randall Q. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (12) :5985-5998
[4]   Hybrid porous solids:: past, present, future [J].
Ferey, Gerard .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (01) :191-214
[5]  
Freund, 2021, ANGEW CHEM, V133, P24174
[6]   The Current Status of MOF and COF Applications [J].
Freund, Ralph ;
Zaremba, Orysia ;
Dinca, Mircea ;
Arnauts, Giel ;
Ameloot, Rob ;
Skorupskii, Grigorii ;
Bavykina, Anastasiya ;
Gascon, Jorge ;
Ejsmont, Aleksander ;
Goscianska, Joanna ;
Kalmutzki, Markus ;
Lachelt, Ulrich ;
Ploetz, Evelyn ;
Diercks, Christian S. ;
Wuttke, Stefan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (45) :23975-24001
[7]   Machine-learned potentials for next-generation matter simulations [J].
Friederich, Pascal ;
Hase, Florian ;
Proppe, Jonny ;
Aspuru-Guzik, Alan .
NATURE MATERIALS, 2021, 20 (06) :750-761
[8]   The Chemistry and Applications of Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Cordova, Kyle E. ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2013, 341 (6149) :974-+
[9]  
Gilmer J, 2017, PR MACH LEARN RES, V70
[10]   How to explore chemical space using algorithms and automation [J].
Gromski, Piotr S. ;
Henson, Alon B. ;
Granda, Jaroslaw M. ;
Cronin, Leroy .
NATURE REVIEWS CHEMISTRY, 2019, 3 (02) :119-128