High-order Tensor Regularization with Application to Attribute Ranking

被引:1
作者
Kim, Kwang In [1 ]
Park, Juhyun [2 ]
Tompkin, James [3 ]
机构
[1] Univ Bath, Bath, Avon, England
[2] Univ Lancaster, Lancaster, England
[3] Brown Univ, Providence, RI 02912 USA
来源
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2018年
基金
英国工程与自然科学研究理事会;
关键词
FRAMEWORK;
D O I
10.1109/CVPR.2018.00457
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When learning functions on manifolds, we can improve performance by regularizing with respect to the intrinsic manifold geometry rather than the ambient space. However; when regularizing tensor learning, calculating the derivatives along this intrinsic geometry is not possible, and so existing approaches are limited to regularizing in Euclidean space. Our new method for intrinsically regularizing and learning tensors on Riemannian manifolds introduces a surrogate object to encapsulate the geometric characteristic of the tensor. Regularizing this instead allows us to learn non-symmetric and high-order tensors. We apply our approach to the relative attributes problem, and we demonstrate that explicitly regularizing high-order relationships between pairs of data points improves performance.
引用
收藏
页码:4349 / 4357
页数:9
相关论文
共 45 条
  • [1] [Anonymous], 2002, P ACM SIGKDD KDD 200
  • [2] [Anonymous], 2009, Learning multiple layers of features from tiny images
  • [3] [Anonymous], 2011, the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
  • [4] [Anonymous], 2005, J COMPUT SYST SCI
  • [5] [Anonymous], 2006, IEEE T NEURAL NETWOR
  • [6] [Anonymous], 2010, Analysis of ordinal categorical data
  • [7] Arvanitidis G., 2018, ARXIV171011379V2
  • [8] Buhler T., 2009, P 26 ANN INT C MACH, P81, DOI DOI 10.1145/1553374.1553385
  • [9] Efficient algorithms for ranking with SVMs
    Chapelle, O.
    Keerthi, S. S.
    [J]. INFORMATION RETRIEVAL, 2010, 13 (03): : 201 - 215
  • [10] Describing Textures in the Wild
    Cimpoi, Mircea
    Maji, Subhransu
    Kokkinos, Iasonas
    Mohamed, Sammy
    Vedaldi, Andrea
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3606 - 3613