Fixed-point theorems for countably condensing maps on Frechet spaces

被引:3
作者
Agarwal, RP
O'Regan, D
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
countably condensing operators; Frechet spaces; fixed-point theorems; integral inclusions;
D O I
10.1016/S0898-1221(01)00207-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New fixed-point results for countably condensing operators defined on Frechet spaces axe presented. Applications to integral inclusions are also discussed. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:909 / 916
页数:8
相关论文
共 12 条
[1]  
AGARWAL RP, UNPUB NONLINEAR INTE
[2]  
AGARWAL RP, IN PRESS SET VALUED
[3]  
AGARWAL RP, IN PRESS J KOREAN MA
[4]  
AGARWAL RP, IN PRESS MULTIVALUED
[5]   UPPER SEMICONTINUITY OF NEMYTSKIJ OPERATORS [J].
CELLINA, A ;
FRYSZKOWSKI, A ;
RZEZUCHOWSKI, T .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 160 :321-330
[6]  
Frigon M., 1995, NATO ASI SER C-MATH, V472, P51
[7]  
GUENTHER RB, 1995, BOUNDARY VALUE PROBL, P153
[8]  
LASOTA A, 1965, B ACAD POL SCI SMAP, V13, P781
[9]   Fixed points for set-valued mappings in locally convex linear topological spaces [J].
O'Regan, D .
MATHEMATICAL AND COMPUTER MODELLING, 1998, 28 (01) :45-55
[10]   Integral inclusions of upper semi-continuous or lower semi-continuous type [J].
ORegan, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (08) :2391-2399