Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions

被引:30
作者
Tringides, Christina M. [1 ,2 ,3 ]
Mooney, David J. [3 ,4 ]
机构
[1] Harvard Univ, Harvard Program Biophys, Cambridge, MA 02138 USA
[2] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
bioelectronics; biomaterials; surface electrode arrays; PHOTOVOLTAIC RETINAL PROSTHESIS; FLEXIBLE MICROELECTRODE ARRAYS; SPINAL-CORD STIMULATION; ON-SKIN ELECTRONICS; MECHANICAL-PROPERTIES; MULTIELECTRODE ARRAY; PERIPHERAL-NERVE; EXTRACELLULAR-MATRIX; VENTRICULAR-TACHYCARDIA; ELECTRICAL-STIMULATION;
D O I
10.1002/adma.202107207
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface electrode arrays are mainly fabricated from rigid or elastic materials, and precisely manipulated ductile metal films, which offer limited stretchability. However, the living tissues to which they are applied are nonlinear viscoelastic materials, which can undergo significant mechanical deformation in dynamic biological environments. Further, the same arrays and compositions are often repurposed for vastly different tissues rather than optimizing the materials and mechanical properties of the implant for the target application. By first characterizing the desired biological environment, and then designing a technology for a particular organ, surface electrode arrays may be more conformable, and offer better interfaces to tissues while causing less damage. Here, the various materials used in each component of a surface electrode array are first reviewed, and then electrically active implants in three specific biological systems, the nervous system, the muscular system, and skin, are described. Finally, the fabrication of next-generation surface arrays that overcome current limitations is discussed.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] IMPLANTABLE CARDIOVERTER DEFIBRILLATORS - CURRENT STATUS AND FUTURE-DIRECTIONS
    DAMIANO, RJ
    JOURNAL OF CARDIAC SURGERY, 1992, 7 (01) : 36 - 57
  • [2] Technology of deep brain stimulation: current status and future directions
    Krauss, Joachim K.
    Lipsman, Nir
    Aziz, Tipu
    Boutet, Alexandre
    Brown, Peter
    Chang, Jin Woo
    Davidson, Benjamin
    Grill, Warren M.
    Hariz, Marwan I.
    Horn, Andreas
    Schulder, Michael
    Mammis, Antonios
    Tass, Peter A.
    Volkmann, Jens
    Lozano, Andres M.
    NATURE REVIEWS NEUROLOGY, 2021, 17 (02) : 75 - 87
  • [3] Nanocrystalline materials - Current research and future directions
    Suryanarayana, C
    Koch, CC
    HYPERFINE INTERACTIONS, 2000, 130 (1-4): : 5 - 44
  • [5] Nanocrystalline materials – Current research and future directions
    C. Suryanarayana
    C.C. Koch
    Hyperfine Interactions, 2000, 130 : 5 - 44
  • [6] Extraction of keratin from keratinous wastes: current status and future directions
    Senthilkumar, Neeharika
    Chowdhury, Snehaunshu
    Sanpui, Pallab
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2023, 25 (01) : 1 - 16
  • [7] Current status and future directions of fused filament fabrication
    Singh, Sunpreet
    Singh, Gurminder
    Prakash, Chander
    Ramakrishna, Seeram
    JOURNAL OF MANUFACTURING PROCESSES, 2020, 55 (55) : 288 - 306
  • [8] Spinal Cord Stimulation for Spasticity: Historical Approaches, Current Status, and Future Directions
    Nagel, Sean J.
    Wilson, Saul
    Johnson, Michael D.
    Machado, Andre
    Frizon, Leonardo
    Chardon, Matthieu K.
    Reddy, Chandan G.
    Gillies, George T.
    Howard, Matthew A., III
    NEUROMODULATION, 2017, 20 (04): : 307 - 321
  • [9] Softening implantable bioelectronics: Material designs, applications, and future directions
    Oh, Subin
    Lee, Simok
    Kim, Sung Woo
    Kim, Choong Yeon
    Jeong, Eun Young
    Lee, Juhyun
    Kwon, Do A.
    Jeong, Jae-Woong
    BIOSENSORS & BIOELECTRONICS, 2024, 258
  • [10] Preclinical in vitro evaluation of implantable materials: conventional approaches, new models and future directions
    Frisch, Emilie
    Clavier, Lisa
    Belhamdi, Abdessamad
    Vrana, Nihal Engin
    Lavalle, Philippe
    Frisch, Benoit
    Heurtault, Beatrice
    Gribova, Varvara
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11