Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter

被引:139
作者
Zhao, Chunpeng [1 ]
Sun, Jinhua [1 ]
Wang, Qingsong [1 ,2 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Chinese Acad Sci CAS, Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Lithium-ion battery safety; EV-ARC; Thermal runaway hazards; Thermal runaway; INDUCED FAILURE; CYCLE LIFE; CELLS; LICOO2; LI(NI1/3CO1/3MN1/3)O-2; EXPLOSION; STABILITY; MECHANISM; SAFETY;
D O I
10.1016/j.est.2020.101232
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the increase of lithium-ion batteries energy density and capacity, the thermal runaway (TR) is becoming a significant issue that can't be ignored. In this work, one kind of commercial 18650 lithium-ion battery with different states of charge (SOCs) and cycling times is used to evaluate the TR hazards by a ramp heating method in an extended volume accelerating rate calorimeter. Some thermal characteristic parameters are selected and analyzed from the experiment trails, such as the cell surface temperature, temperature rise rate, canister internal pressure and average canister surface temperature. The experiment results show that the maximum surface temperature of the battery and the maximum canister internal pressure increase with the increase of SOC when the TR occurs. The thermal energy released from the battery during TR is calculated using the initial and the maximum temperature on the battery and the canister surface. A fully charged fresh battery can release 61.72 kJ energy when it gets into TR, which could be converted to an explosion equivalent of 5.57 g TNT-equivalent. Compared with fresh batteries, aged batteries are more prone to get into TR and the TR hazards increase.
引用
收藏
页数:9
相关论文
共 34 条
[1]  
[Anonymous], [No title captured]
[2]   Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression [J].
Bach, Tobias C. ;
Schuster, Simon F. ;
Fleder, Elena ;
Mueller, Jana ;
Brand, Martin J. ;
Lorrmann, Henning ;
Jossen, Andreas ;
Sextl, Gerhard .
JOURNAL OF ENERGY STORAGE, 2016, 5 :212-223
[3]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[4]   On safety of lithium-ion cells [J].
Biensan, P ;
Simon, B ;
Pérès, JP ;
de Guibert, A ;
Broussely, M ;
Bodet, JM ;
Perton, F .
JOURNAL OF POWER SOURCES, 1999, 81 :906-912
[5]   Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries [J].
Boerner, M. ;
Friesen, A. ;
Gruetzke, M. ;
Stenzel, Y. P. ;
Brunklaus, G. ;
Haetge, J. ;
Nowak, S. ;
Schappacher, F. M. ;
Winter, M. .
JOURNAL OF POWER SOURCES, 2017, 342 :382-392
[6]   Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge [J].
Chen, Wei-Chun ;
Wang, Yih-Wen ;
Shu, Chi-Min .
JOURNAL OF POWER SOURCES, 2016, 318 :200-209
[7]  
Crowl D.A., 2011, Chemical process safety: fundamentals with applications, V3rd
[8]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[9]   Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J].
Feng, Xuning ;
Fang, Mou ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wang, Hao ;
Zhang, Mingxuan .
JOURNAL OF POWER SOURCES, 2014, 255 :294-301
[10]   Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries [J].
Fleischhammer, Meike ;
Waldmann, Thomas ;
Bisle, Gunther ;
Hogg, Bjoern-Ingo ;
Wohlfahrt-Mehrens, Margret .
JOURNAL OF POWER SOURCES, 2015, 274 :432-439