Symmetries and similarity reductions of a new (2+1)-dimensional shallow water wave system

被引:8
作者
Ping, Liu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China
关键词
(2+1)-dimensional shallow water wave system; classical Lie group approach; symmetries; similarity reductions;
D O I
10.1088/0253-6102/49/3/06
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. The (1+1) dimensional displacement shallow water wave equation can be derived from the reductions when special symmetry parameters are chosen.
引用
收藏
页码:555 / 558
页数:4
相关论文
共 13 条
[1]  
Bluman G. W., 1989, Symmetries and Differential Equations
[2]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[3]   KORTEWEG-DEVRIES EQUATION AND WATER WAVES .2. COMPARISON WITH EXPERIMENTS [J].
HAMMACK, JL ;
SEGUR, H .
JOURNAL OF FLUID MECHANICS, 1974, 65 (AUG28) :289-314
[4]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[5]  
Kortewege D. J., 1895, PHILOS MAG, V39, P422, DOI DOI 10.1080/14786449508620739
[6]  
Lou S. Y., 2006, METHODS NONLINEAR MA
[7]   On a nonlinear discretized LKR system: Reductions and underlying Virasoro symmetry algebras [J].
Lou, SY ;
Rogers, C ;
Schief, WK .
STUDIES IN APPLIED MATHEMATICS, 2004, 113 (04) :353-380
[8]   Finite symmetry transformation groups and exact solutions of Lax integrable systems [J].
Ma, HC ;
Lou, SY .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (02) :193-196
[9]  
NOETHER AE, 1918, MATH PHYS KI, V2, P235
[10]  
Olver PJ., 1986, Applications of Lie groups to differential equations, DOI 10.1007/978-1-4684-0274-2