Tenascin C in stem cell niches: Redundant, permissive or instructive?

被引:45
作者
von Holst, Alexander [1 ]
机构
[1] Ruhr Univ Bochum, Dept Cell Morphol & Mol Neurobiol, DE-44780 Bochum, Germany
关键词
stem cell niche; forebrain; gene trap;
D O I
10.1159/000112848
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
The stem cell niche provides the specialized environment that is able to sustain the lifelong maintenance of stem cells in their discrete locations within organs. The niche is usually composed of several different cell types and a specialized extracellular matrix consisting of many different constituents. Additionally, a variety of growth factors are secreted into the extracellular space and contribute to the functional organization of the niche. Here, I will concentrate on the multimodular extracellular matrix glycoprotein tenascin C (Tnc) and discuss it as an exemplary molecule that is present in several stem cell niches. In spite of its intuitively suggestive presence, it has been difficult to provide functional evidence for the importance of Tnc in the context of stem cells. In the nervous system, the careful analysis of Tnc-deficient mice has revealed that the developmental program neural stem cell pass-through is delayed due to changes in growth factor responsiveness. To gain further insight, we have employed the gene trap technology in neural stem cells to identify potential Tnc target genes. This approach has surfaced 2 interesting candidates that may contribute to a better understanding of the signal(s) elicited by Tnc in neural stem/progenitor cells in the niche. Copyright (c) 2007 S. Karger AG, Basel.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 81 条
[1]   For the long run: Maintaining germinal niches in the adult brain [J].
Alvarez-Buylla, A ;
Lim, DA .
NEURON, 2004, 41 (05) :683-686
[2]  
BARTSCH S, 1992, J NEUROSCI, V12, P736
[3]   Epidermal stem cells of the skin [J].
Blanpain, Cedric ;
Fuchs, Elaine .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2006, 22 :339-373
[4]   β1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance [J].
Campos, LS ;
Leone, DP ;
Relvas, JB ;
Brakebusch, C ;
Fässler, R ;
Suter, U ;
ffrench-Constant, C .
DEVELOPMENT, 2004, 131 (14) :3433-3444
[5]   Niche-independent symmetrical self-renewal of a mammalian tissue stem cell [J].
Conti, L ;
Pollard, SM ;
Gorba, T ;
Reitano, E ;
Toselli, M ;
Biella, G ;
Sun, YR ;
Sanzone, S ;
Ying, QL ;
Cattaneo, E ;
Smith, A .
PLOS BIOLOGY, 2005, 3 (09) :1594-1606
[6]   Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells [J].
D'Amour, KA ;
Gage, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 :11866-11872
[7]   The glial identity of neural stem cells [J].
Doetsch, F .
NATURE NEUROSCIENCE, 2003, 6 (11) :1127-1134
[8]   Subventricular zone astrocytes are neural stem cells in the adult mammalian brain [J].
Doetsch, F ;
Caillé, I ;
Lim, DA ;
García-Verdugo, JM ;
Alvarez-Buylla, A .
CELL, 1999, 97 (06) :703-716
[9]   EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells [J].
Doetsch, F ;
Petreanu, L ;
Caille, I ;
Garcia-Verdugo, JM ;
Alvarez-Buylla, A .
NEURON, 2002, 36 (06) :1021-1034
[10]  
Doetsch F, 1997, J NEUROSCI, V17, P5046