Exchange-correlation approximations for reduced-density-matrix-functional theory at finite temperature: Capturing magnetic phase transitions in the homogeneous electron gas

被引:7
|
作者
Baldsiefen, Tim [1 ,2 ]
Cangi, Attila [3 ]
Eich, F. G. [4 ]
Gross, E. K. U. [2 ]
机构
[1] Free Univ Berlin, Inst Theoret Phys, Arnimallee 14, D-14195 Berlin, Germany
[2] Max Planck Inst Microstruct Phys, Weinberg 2, D-06112 Halle, Germany
[3] Sandia Natl Labs, Ctr Comp Res, Albuquerque, NM 87185 USA
[4] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
关键词
HARTREE-FOCK APPROXIMATION; NATURAL SPIN-ORBITALS; CORRELATION ENERGIES; FERROMAGNETISM; SYSTEMS; REPRESENTABILITY; ACCURATE; LIQUID; STATE;
D O I
10.1103/PhysRevA.96.062508
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive an intrinsically temperature-dependent approximation to the correlation grand potential for many-electron systems in thermodynamical equilibrium in the context of finite-temperature reduced-density-matrix-functional theory (FT-RDMFT). We demonstrate its accuracy by calculating the magnetic phase diagram of the homogeneous electron gas. We compare it to known limits from highly accurate quantum Monte Carlo calculations as well as to phase diagrams obtained within existing exchange-correlation approximations from density functional theory and zero-temperature RDMFT.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Validity of power functionals for a homogeneous electron gas in reduced-density-matrix-functional theory
    Putaja, A.
    Eich, F. G.
    Baldsiefen, T.
    Rasanen, E.
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [2] Reduced-density-matrix-functional theory at finite temperature: Theoretical foundations
    Baldsiefen, Tim
    Cangi, Attila
    Gross, E. K. U.
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [3] Noncollinear spin-spiral phase for the uniform electron gas within reduced-density-matrix-functional theory
    Eich, F. G.
    Kurth, S.
    Proetto, C. R.
    Sharma, S.
    Gross, E. K. U.
    PHYSICAL REVIEW B, 2010, 81 (02):
  • [4] Lattice density functional theory at finite temperature with strongly density-dependent exchange-correlation potentials
    Gao Xianlong
    Chen, A-Hai
    Tokatly, I. V.
    Kurth, S.
    PHYSICAL REVIEW B, 2012, 86 (23)
  • [5] Electron correlation and the structure of the exchange-correlation potential and the correlation energy density in density functional theory
    Baerends, EJ
    Gritsenko, O
    vanLeeuwen, R
    NEW METHODS IN QUANTUM THEORY, 1996, 8 : 395 - 413
  • [6] Density-Matrix Coupled Time-Dependent Exchange-Correlation Functional Approximations
    Lacombe, Lionel
    Maitra, Neepa T.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (03) : 1672 - 1678
  • [7] Exchange-correlation magnetic fields in spin-density-functional theory
    Pluhar, Edward A., III
    Ullrich, Carsten A.
    PHYSICAL REVIEW B, 2019, 100 (12)
  • [8] Performance of exchange-correlation approximations to density functional theory for rare-earth oxides
    Caucci, Mary Kathleen
    Sivak, Jacob T.
    Almishal, Saeed S. I.
    Rost, Christina M.
    Dabo, Ismaila
    Maria, Jon-Paul
    Sinnott, Susan B.
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 253
  • [9] Muller's exchange-correlation energy in density-matrix-functional theory
    Frank, Rupert L.
    Lieb, Elliott H.
    Seiringer, Robert
    Siedentop, Heinz
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [10] Exchange-correlation energy for the three-dimensional homogeneous electron gas at arbitrary temperature
    Brown, Ethan W.
    DuBois, Jonathan L.
    Holzmann, Markus
    Ceperley, David M.
    PHYSICAL REVIEW B, 2013, 88 (08):