Hybrid cost aggregation for dense stereo matching

被引:5
作者
Yao, Ming [1 ]
Ouyang, Wenbin [2 ]
Xu, Bugao [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[2] Univ North Texas, Dept Comp Sci & Engn, Denton, TX 76207 USA
关键词
Stereo matching; Hybrid cost aggregation; Adaptive support region; ALGORITHM;
D O I
10.1007/s11042-020-09127-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Matching cost initialization and aggregation are two major steps in the stereo matching framework. For dense stereo matching, a matching cost needs to be computed at each pixel for all disparities within the search range so that it can be used to evaluate pixel-to-pixel correspondence. Cost aggregation connects the matching cost with a certain neighbourhood to reduce mismatches by a supporting smoothness term. This paper presents a hybrid cost aggregation method to overcome mismatches caused by textureless surface, depth-discontinuity areas, inconsistent lightings in an image. The steps taken to aggregate costs for an energy function include adaptive support regions, multi-path aggregation, and adaptive penalties to generate a more accurate disparity map. Compared with two top-ranked stereo matching algorithms, the proposed algorithm yielded the disparity maps of the dataset in Middlebury benchmark V2 with smaller error ratios in depth-discontinuity regions.
引用
收藏
页码:23189 / 23202
页数:14
相关论文
共 21 条
[11]   Segment-Tree based Cost Aggregation for Stereo Matching [J].
Mei, Xing ;
Sun, Xun ;
Dong, Weiming ;
Wang, Haitao ;
Zhang, Xiaopeng .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :313-320
[12]   Fast Cost-Volume Filtering for Visual Correspondence and Beyond [J].
Rhemann, Christoph ;
Hosni, Asmaa ;
Bleyer, Michael ;
Rother, Carsten ;
Gelautz, Margrit .
2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
[13]  
Scharstein D., 2010, MIDDLEBURY STEREO VI
[14]   Bilateral filtering for gray and color images [J].
Tomasi, C ;
Manduchi, R .
SIXTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, 1998, :839-846
[15]   A hierarchical symmetric stereo algorithm using dynamic programming [J].
Van Meerbergen, G ;
Vergauwen, M ;
Pollefeys, M ;
Van Gool, L .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 47 (1-3) :275-285
[16]  
Veksler O, 2003, PROC CVPR IEEE, P556
[17]   A Dense Stereovision System for 3D Body Imaging [J].
Yao, Ming ;
Xu, Bugao .
IEEE ACCESS, 2019, 7 (170907-170918) :170907-170918
[18]   Adaptive support-weight approach for correspondence search [J].
Yoon, KJ ;
Kweon, IS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (04) :650-656
[19]   A portable stereo vision system for whole body surface imaging [J].
Yu, Wurong ;
Xu, Bugao .
IMAGE AND VISION COMPUTING, 2010, 28 (04) :605-613
[20]   Accurate Image-Guided Stereo Matching With Efficient Matching Cost and Disparity Refinement [J].
Zhan, Yunlong ;
Gu, Yuzhang ;
Huang, Kui ;
Zhang, Cheng ;
Hu, Keli .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (09) :1632-1645