Focusing through random media: Eigenchannel participation number and intensity correlation

被引:42
作者
Davy, Matthieu [1 ]
Shi, Zhou [1 ]
Genack, Azriel Z. [1 ]
机构
[1] CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA
基金
美国国家科学基金会;
关键词
RANDOM-MATRIX-THEORY; MULTIPLE-SCATTERING; TIME-REVERSAL; DISORDERED CONDUCTORS; FLUCTUATIONS; TRANSMISSION; WAVES; DISTRIBUTIONS; LIGHT;
D O I
10.1103/PhysRevB.85.035105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using random matrix calculations, we show that the contrast between maximally focused intensity through random media and the background of the transmitted speckle pattern for diffusive waves is mu(N) = 1 + N-eff, where N-eff is the eigenchannel participation number for the transmission matrix. For diffusive waves, N-eff is the inverse of the degree of intensity correlation kappa. The profile of the focused beam relative to the ensemble average intensity is expressed in terms of the square of the normalized spatial field correlation function F(Delta r) and kappa. These results are demonstrated in microwave experiments and provide the parameters for optimal focusing and the limits of imaging.
引用
收藏
页数:6
相关论文
共 38 条
[1]  
ALTSHULER BL, 1985, JETP LETT+, V41, P648
[2]  
[Anonymous], MATH USSR SBORNIK
[3]   Random Matrix Theory Applied to Acoustic Backscattering and Imaging In Complex Media [J].
Aubry, Alexandre ;
Derode, Arnaud .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[4]   Control of Light Transmission through Opaque Scattering Media in Space and Time [J].
Aulbach, Jochen ;
Gjonaj, Bergin ;
Johnson, Patrick M. ;
Mosk, Allard P. ;
Lagendijk, Ad .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)
[5]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808
[6]   Statistical signatures of photon localization [J].
Chabanov, AA ;
Stoytchev, M ;
Genack, AZ .
NATURE, 2000, 404 (6780) :850-853
[7]   Dynamic correlation in wave propagation in random media [J].
Chabanov, AA ;
Hu, B ;
Genack, AZ .
PHYSICAL REVIEW LETTERS, 2004, 93 (12) :123901-1
[8]   Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink [J].
de Rosny, J ;
Fink, M .
PHYSICAL REVIEW LETTERS, 2002, 89 (12) :124301-124301
[9]   Random multiple scattering of ultrasound. II. Is time reversal a self-averaging process? art. no. 036606 [J].
Derode, A ;
Tourin, A ;
Fink, M .
PHYSICAL REVIEW E, 2001, 64 (03) :13-366113
[10]   ROBUST ACOUSTIC TIME-REVERSAL WITH HIGH-ORDER MULTIPLE-SCATTERING [J].
DERODE, A ;
ROUX, P ;
FINK, M .
PHYSICAL REVIEW LETTERS, 1995, 75 (23) :4206-4209