A nonlinear two-point boundary-value problem in geophysics

被引:21
作者
Marynets, Kateryna [1 ]
机构
[1] Uzhgorod Natl Univ, Dept Math, Uzhgorod, Ukraine
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 188卷 / 02期
关键词
Nonlinear boundary-value problem; Ocean gyre; Second order differential equations; 34B15; 86A05; WATER-WAVES; EXISTENCE; STEADY;
D O I
10.1007/s00605-017-1127-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a recently derived model for gyres, equivalent to a a two-point boundary-value problem for ocean flows with no azimuthal variations. For a large class of oceanic vorticities we establish the existence of solutions using an approach based on the topological transversality theorem.
引用
收藏
页码:287 / 295
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 2003, FIXED POINT THEOR-RO, DOI DOI 10.1007/978-0-387-21593-8
[2]  
BAILEY P, 1966, ARCH RATION MECH AN, V21, P310
[3]  
Bernstein S. N., 1912, Ann. Sci. c. Norm. Supr, V29, P431, DOI [10.24033/asens.651, DOI 10.24033/ASENS.651]
[4]   On a differential equation arising in geophysics [J].
Chu, Jifeng .
MONATSHEFTE FUR MATHEMATIK, 2018, 187 (03) :499-508
[5]   Gerstner waves in the presence of mean currents and rotation [J].
Constantin, A. ;
Monismith, S. G. .
JOURNAL OF FLUID MECHANICS, 2017, 820 :511-528
[6]   Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates [J].
Constantin, A. ;
Johnson, R. S. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2200)
[7]   An Exact, Steady, Purely Azimuthal Flow as a Model for the Antarctic Circumpolar Current [J].
Constantin, A. ;
Johnson, R. S. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2016, 46 (12) :3585-3594
[8]   An Exact, Steady, Purely Azimuthal Equatorial Flow with a Free Surface [J].
Constantin, A. ;
Johnson, R. S. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2016, 46 (06) :1935-1945
[9]   The dynamics of waves interacting with the Equatorial Undercurrent [J].
Constantin, A. ;
Johnson, R. S. .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2015, 109 (04) :311-358
[10]   ON A 2-POINT BOUNDARY-VALUE PROBLEM [J].
CONSTANTIN, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 193 (01) :318-328