Bilinear optimal control for a wave equation

被引:32
作者
Liang, M [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
D O I
10.1142/S0218202599000051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of optimal control of a wave equation. A bilinear control is used to bring the state solutions close to a desired profile under a quadratic cost of control. We establish the existence of solutions of the underlying initial boundary-value problem and of an optimal control that minimizes the cost functional. We derive an optimality system by formally differentiating the cost functional with respect to the control and evaluating the result at an optimal control. We establish existence and uniqueness of the solution of the optimality system and thus determine the unique optimal control in terms of the solution of the optimality system.
引用
收藏
页码:45 / 68
页数:24
相关论文
共 19 条
[1]  
[Anonymous], 1988, APPL MATH SCI
[2]   FEEDBACK STABILIZATION OF DISTRIBUTED SEMI-LINEAR CONTROL-SYSTEMS [J].
BALL, JM ;
SLEMROD, M .
APPLIED MATHEMATICS AND OPTIMIZATION, 1979, 5 (02) :169-179
[3]   CONTROLLABILITY FOR DISTRIBUTED BILINEAR-SYSTEMS [J].
BALL, JM ;
MARSDEN, JE ;
SLEMROD, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (04) :575-597
[4]   NON-HARMONIC FOURIER-SERIES AND THE STABILIZATION OF DISTRIBUTED SEMI-LINEAR CONTROL-SYSTEMS [J].
BALL, JM ;
SLEMROD, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (04) :555-586
[5]  
BELINSKIY BP, CONTROLLABILITY OSCI
[6]  
Curtain R. F., 1978, Infinite dimensional linear systems theory, DOI 10.1007/BFb0006761
[7]  
Evans L.C., 1990, WEAK CONVERGENCE MET
[8]  
EVANS LC, 1993, BERKELEY MATH LECT N, V3
[9]  
Gilbarg D, 1977, ELLIPTIC PARTIAL DIF
[10]  
Lasiecka I., 1991, LECT NOTES CONTROL I, V164