Sufficient conditions for the global rigidity of graphs

被引:18
|
作者
Tanigawa, Shin-ichi [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
Rigidity of graphs; Global rigidity; Unique graph realizations; Rigidity matroid; LINKING (N-2)-DIMENSIONAL PANELS; N-SPACE; REALIZATIONS; MATROIDS; FRAMEWORKS; BODY;
D O I
10.1016/j.jctb.2015.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate how to find generic and globally rigid realizations of graphs in R-d based on elementary geometric observations. Our arguments lead to new proofs of a combinatorial characterization of the global rigidity of graphs in R-2 by Jackson and Jordan and that of body-bar graphs in R-d recently shown by Connelly, Jordan, and Whiteley. We also extend the 1-extension theorem and Connelly's composition theorem, which are main tools for generating globally rigid graphs in R-d. In particular we show that any vertex-redundantly rigid graph in R-d is globally rigid in R-d, where a graph G = (V, E) is called vertex-redundantly rigid if G - v is rigid for any v is an element of V. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:123 / 140
页数:18
相关论文
共 49 条
  • [1] Sufficient Conditions for the Global Rigidity of Periodic Graphs
    Kaszanitzky, Viktoria E.
    Kiraly, Csaba
    Schulze, Bernd
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (01) : 1 - 16
  • [2] Sufficient Conditions for the Global Rigidity of Periodic Graphs
    Viktória E. Kaszanitzky
    Csaba Király
    Bernd Schulze
    Discrete & Computational Geometry, 2022, 67 : 1 - 16
  • [3] SUFFICIENT CONDITIONS FOR 2-DIMENSIONAL GLOBAL RIGIDITY
    Gu, Xiaofeng
    Meng, Wei
    Rolek, Martin
    Wang, Yue
    Yu, Gexin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 2520 - 2534
  • [4] Global rigidity of periodic graphs under fixed-lattice representations
    Kaszanitzky, Viktoria E.
    Schulze, Bernd
    Tanigawa, Shin-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 : 176 - 218
  • [5] GLOBAL RIGIDITY OF UNIT BALL GRAPHS
    Garamvolgyi, Daniel
    Jordan, Tibor
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 212 - 229
  • [6] On the global rigidity of tensegrity graphs
    Garamvolgyi, Daniel
    DISCRETE APPLIED MATHEMATICS, 2021, 302 : 114 - 122
  • [7] Necessary Conditions for the Generic Global Rigidity of Frameworks on Surfaces
    Jackson, B.
    McCourt, T. A.
    Nixon, A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (02) : 344 - 360
  • [8] Characterizing redundant rigidity and redundant global rigidity of body-hinge graphs
    Kobayashi, Yuki
    Higashikawa, Yuya
    Katoh, Naoki
    Sljoka, Adnan
    INFORMATION PROCESSING LETTERS, 2016, 116 (02) : 175 - 178
  • [9] Operations preserving the global rigidity of graphs and frameworks in the plane
    Jordan, Tibor
    Szabadka, Zoltan
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (6-7): : 511 - 521
  • [10] Necessary Conditions for the Global Rigidity of Direction-Length Frameworks
    Jackson, Bill
    Keevash, Peter
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (01) : 72 - 85