Geometric convergence of algorithms in gambling theory

被引:1
|
作者
Ramakrishnan, S [1 ]
Sudderth, W
机构
[1] Univ Miami, Dept Math & Comp Sci, Coral Gables, FL 33124 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词
finite gambling problem; algorithm; geometric convergence;
D O I
10.1287/moor.23.3.568
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the Dubins and Savage theory of gambling, backward induction provides an algorithm for calculating the optimal return when the gambling problem is leavable. A relatively new algorithm works for nonleavable problems. We show that these algorithms converge geometrically fast for finite gambling problems. Our argument also provides a much simpler proof of convergence for the nonleavable case.
引用
收藏
页码:568 / 575
页数:8
相关论文
共 50 条