Cubic Curves, Finite Geometry and Cryptography

被引:5
作者
Bruen, A. A. [2 ]
Hirschfeld, J. W. P. [3 ]
Wehlau, D. L. [1 ]
机构
[1] Royal Mil Coll Canada, Dept Math & Comp Sci, Kingston, ON K7K 7B4, Canada
[2] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB T2N 1N4, Canada
[3] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
基金
加拿大自然科学与工程研究理事会;
关键词
Cubic curves; Group law; Non-singularity; Elliptic curve cryptography; Finite geometries; FIELDS; ARCS;
D O I
10.1007/s10440-011-9620-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some geometry on non-singular cubic curves, mainly over finite fields, is surveyed. Such a curve has 9,3,1 or 0 points of inflexion, and cubic curves are classified accordingly. The group structure and the possible numbers of rational points are also surveyed. A possible strengthening of the security of elliptic curve cryptography is proposed using a 'shared secret' related to the group law. Cubic curves are also used in a new way to construct sets of points having various combinatorial and geometric properties that are of particular interest in finite Desarguesian planes.
引用
收藏
页码:265 / 278
页数:14
相关论文
共 13 条
[1]   Maximum distance separable codes and arcs in projective spaces [J].
Alderson, T. L. ;
Bruen, A. A. ;
Silverman, R. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (06) :1101-1117
[2]  
[Anonymous], ANN SCI ECOLE NORM S
[3]  
Bruen A., 2005, CRYPTOGRAPHY INFORM
[4]  
BRUEN AA, 1984, COMB S MATH, V28, P15
[5]  
Fulton W., 1969, Algebraic Curves
[6]  
Hirschfeld J.W.P, 1998, PROJECTIVE GEOMETRIE
[7]  
Hirschfeld J.W.P., 2008, Princeton Series in Applied Mathematics
[8]  
Lang F., 2002, FORUM GEOM, V2, P135
[9]  
RUCK H, 1987, MATH COMPUT, V49, P201
[10]  
Scafati M. T., 1971, ATT CONV GEOM COMB S, P413