Hodge genera of algebraic varieties I

被引:26
作者
Cappell, Sylvain E. [1 ]
Maxim, Laurentiu G. [1 ,2 ]
Shaneson, Julius L. [3 ]
机构
[1] Courant Inst, New York, NY 10012 USA
[2] Inst Math Romanian Acad, Bucharest 70700, Romania
[3] Univ Penn, Dept Math, David Rittenhouse Lab, Philadelphia, PA 19104 USA
关键词
D O I
10.1002/cpa.20202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the behavior of Hodge-theoretic (intersection homology) genera and their associated characteristic classes under proper morphisms of complex algebraic varieties. We obtain formulae that relate (parametrized families of) global invariants of a complex algebraic variety X to such invariants of singularities of proper algebraic maps defined on X. Such formulae severely constrain, both topologically and analytically, the singularities of complex maps, even between smooth varieties. Similar results were announced by the first and third author in [13, 32]. (C) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:422 / 449
页数:28
相关论文
共 39 条
[1]   Torification and factorization of birational maps [J].
Abramovich, D ;
Karu, K ;
Matsuki, K ;
Lodarczyk, JLW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (03) :531-572
[2]   Computing twisted signatures and L-classes of non-Witt spaces [J].
Banagl, M .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 92 :428-470
[3]   Computing twisted signatures and L-classes of stratified spaces [J].
Banagl, M ;
Cappell, SE ;
Shaneson, JL .
MATHEMATISCHE ANNALEN, 2003, 326 (03) :589-623
[4]  
Baum P., 1975, Publications Mathematiques de l'IHES, V45, P101
[5]  
BEILINSON AA, 1982, ASTERISQUE, P7
[6]  
Bernstein J., 1994, LECT NOTES MATH, V1578
[7]  
Block J, 2006, PURE APPL MATH Q, V2, P1237
[8]  
BOREL A, 1984, PROGR MATH, V50
[9]  
Borel A., 1966, GRUNDLEHREN MATH WIS, V131
[10]  
BRASSELET JP, 2005, ARXIVMATHAG0503492V2