On the derived category of quasi-coherent sheaves on an Adams geometric stack

被引:1
|
作者
Alonso Tarrio, Leovigildo [1 ]
Jeremias Lopez, Ana [1 ]
Perez Rodriguez, Marta [2 ]
Vale Gonsalves, Maria J. [1 ]
机构
[1] Univ Santiago de Compostela, Dept Matemat, E-15782 Santiago De Compostela, Spain
[2] Univ Vigo, Dept Matemat, Esc Sup Enx Informat, Campus Ourense, E-32004 Orense, Spain
关键词
AXIOMATIC STABLE-HOMOTOPY; RESOLUTION PROPERTY; COMPLEXES; SCHEMES;
D O I
10.1016/j.jpaa.2017.05.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be an Adams geometric stack. We show that D (A(qc)(X)), its derived category of quasi-coherent sheaves, satisfies the axioms of a stable homotopy category defined by Hovey, Palmieri and Strickland in [13]. Moreover we show how this structure relates to the derived category of comodules over a Hopf algebroid that determines X. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:828 / 845
页数:18
相关论文
共 50 条
  • [1] The pure derived category of quasi-coherent sheaves
    Hosseini, Esmaeil
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (09) : 3781 - 3788
  • [2] A functorial formalism for quasi-coherent sheaves on a geometric stack
    Alonso Tarrio, Leovigildo
    Jeremias Lopez, Ana
    Perez Rodriguez, Marta
    Vale Gonsalves, Maria J.
    EXPOSITIONES MATHEMATICAE, 2015, 33 (04) : 452 - 501
  • [3] The derived category of quasi-coherent sheaves and axiomatic stable homotopy
    Alonso Tarrio, Leovigildo
    Jeremias Lopez, Ana
    Perez Rodriguez, Marta
    Vale Gonsalves, Maria J.
    ADVANCES IN MATHEMATICS, 2008, 218 (04) : 1224 - 1252
  • [4] Relative homological algebra in the category of quasi-coherent sheaves
    Enochs, E
    Estrada, S
    ADVANCES IN MATHEMATICS, 2005, 194 (02) : 284 - 295
  • [5] A COTORSION THEORY IN THE HOMOTOPY CATEGORY OF FLAT QUASI-COHERENT SHEAVES
    Hosseini, E.
    Salarian, Sh.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (03) : 753 - 762
  • [7] GENERALIZED QUASI-COHERENT SHEAVES
    Enochs, E.
    Estrada, S.
    Garcia-Rozas, J. R.
    Oyonarte, L.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2003, 2 (01) : 63 - 83
  • [8] SECTIONS OF QUASI-COHERENT SHEAVES
    GONZALEZ, JAN
    DESALAS, JBS
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (08) : 2289 - 2293
  • [10] Flat covers in the category of quasi-coherent sheaves over the projective line
    Enochs, E
    Estrada, S
    Rozas, JRG
    Oyonarte, L
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (04) : 1497 - 1508