Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon

被引:118
作者
Gaddam, Rohit Ranganathan [1 ]
Niaei, Amir H. Farokh [2 ]
Hankel, Marlies [2 ]
Searles, Debra J. [2 ,3 ]
Kumar, Nanjundan Ashok [1 ]
Zhao, X. S. [1 ]
机构
[1] Univ Queensland, Sch Chem Engn, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Ctr Theoret & Computat Mol Sci, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
HIGH-PERFORMANCE SODIUM; GRAPHENE OXIDE FRAMEWORKS; ANODE MATERIAL; BATTERY ANODES; LITHIUM; COMPOSITES; NANOSHEETS; REDUCTION; SHEETS; ETHYLENEDIAMINE;
D O I
10.1039/c7ta06754b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate an approach to prepare nitrogen-rich hard carbon (N-HCS) from biomass as a robust anode material for sodium-ion batteries. A reversible capacity of similar to 520 mA h g(-1) at a current density of 20 mA g(-1) along with an excellent rate performance was obtained. When cycled at a high current density of 1 A g(-1), the N-HCS was stable for over 1000 cycles delivering a capacity of similar to 204 mA h g(-1). Density functional theory (DFT) computations verified that nitrogen doping enhances the interaction of sodium ions with the carbon, leading to a significantly improved storage capacity. This work provides new physical insights into the relationship between sodium-ion storage and nitrogen-containing hard carbon materials.
引用
收藏
页码:22186 / 22192
页数:7
相关论文
共 53 条
[1]   Optimization of ink composition based on a non-platinum cathode for single membrane electrode assembly proton exchange membrane fuel cells [J].
Artyushkova, K. ;
Habel-Rodriguez, D. ;
Olson, T. S. ;
Atanassov, P. .
JOURNAL OF POWER SOURCES, 2013, 226 :112-121
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   A review of carbon materials and their composites with alloy metals for sodium ion battery anodes [J].
Balogun, Muhammad-Sadeeq ;
Luo, Yang ;
Qiu, Weitao ;
Liu, Peng ;
Tong, Yexiang .
CARBON, 2016, 98 :162-178
[4]  
Beamson G., 1992, High resolution XPS of organic polymers, P295
[5]   Application of positively-charged ethylenediamine-functionalized graphene for the sorption of anionic organic contaminants from water [J].
Cai, Nan ;
Larese-Casanova, Philip .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2016, 4 (03) :2941-2951
[6]   Surface-modified graphite as an improved intercalating anode for lithium-ion batteries [J].
Cao, YL ;
Xiao, LF ;
Ai, XP ;
Yang, HX .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (02) :A30-A33
[7]   Fundamental factors affecting biomass enzymatic reactivity [J].
Chang, VS ;
Holtzapple, MT .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2000, 84-6 (1-9) :5-37
[8]   Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction [J].
Daems, Nick ;
Sheng, Xia ;
Vankelecom, Ivo F. J. ;
Pescarmona, Paolo P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (12) :4085-4110
[9]   Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance [J].
Fu, Lijun ;
Tang, Kun ;
Song, Kepeng ;
van Aken, Peter A. ;
Yu, Yan ;
Maier, Joachim .
NANOSCALE, 2014, 6 (03) :1384-1389
[10]   Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries [J].
Gaddam, Rohit Ranganathan ;
Jiang, Edward ;
Amiralian, Nasim ;
Annamalai, Pratheep K. ;
Martin, Darren J. ;
Kumar, Nanjundan Ashok ;
Zhao, X. S. .
SUSTAINABLE ENERGY & FUELS, 2017, 1 (05) :1090-1097