An existence theorem for generalized von Karman equations

被引:1
|
作者
Ciarlet, PG
Gratie, L
Sabu, N
机构
[1] Univ Paris 06, Anal Numer Lab, F-75005 Paris, France
[2] Univ Dunarea de Jos, Fac Ingn Braila, Braila 6100, Romania
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 332卷 / 07期
关键词
D O I
10.1016/S0764-4442(01)01903-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using techniques from formal asymptotic analysis, the first two authors have recently identified "generalized von Karman equations", which constitute a two-dimensional model for a nonlinearly elastic plate where only a portion of the lateral face is subjected to boundary conditions of von Karman's type, the remaining portion being free. In this Note, we establish an existence theorem for these equations. To this end, we notably adapt a compactness method due to J.-L. Lions. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:669 / 676
页数:8
相关论文
共 50 条
  • [1] An existence theorem for generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    Sabu, N
    JOURNAL OF ELASTICITY, 2001, 62 (03) : 239 - 248
  • [3] On the existence of solutions to the generalized Marguerre-von Karman equations
    Ciarlet, PG
    Gratie, L
    MATHEMATICS AND MECHANICS OF SOLIDS, 2006, 11 (01) : 83 - 100
  • [4] Generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (04): : 329 - 335
  • [5] Generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (03): : 263 - 279
  • [6] On the generalized von Karman equations and their approximation
    Ciarlet, Philippe G.
    Gratie, Liliana
    Kesavan, Srinivasan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (04): : 617 - 633
  • [7] ON EXISTENCE OF A SOLUTION OF MODIFIED VON KARMAN EQUATIONS
    PIECHOCK.W
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1968, 16 (06): : 511 - &
  • [8] An Existence Theorem for Generalized von Kármán Equations
    Philippe G. Ciarlet
    Liliana Gratie
    Nicholas Sabu
    Journal of elasticity and the physical science of solids, 2001, 62 : 239 - 248
  • [9] From the classical to the generalized von Karman and Marguerre-von Karman equations
    Ciarlet, PG
    Gratie, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 190 (1-2) : 470 - 486
  • [10] Existence Result for a Dynamical Equations of Generalized Marguerre-von Karman Shallow Shells
    Chacha, D. A.
    Ghezal, A.
    Bensayah, A.
    JOURNAL OF ELASTICITY, 2013, 111 (02) : 265 - 283