Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries

被引:70
作者
Fan, Sijia [1 ]
Wang, Hui [1 ]
Qian, Jiangfeng [1 ]
Cao, Yuliang [1 ]
Yang, Hanxi [1 ]
Ai, Xinping [1 ]
Zhong, Faping [2 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China
[2] Natl Engn Res Ctr Adv Energy Storage Mat, Changsha 410205, Peoples R China
关键词
silicon anode; core-shell structure; covalent modification; poly-peri-naphthalene; lithium-ion batteries; LITHIUM; PERFORMANCE; POLYMER;
D O I
10.1021/acsami.0c00676
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon coating is a popular strategy to boost the cyclability of Si anodes for Li-ion batteries. However, most of the Si/C nanocomposite anodes fail to achieve stable cycling due to the easy separation and peeling off of the carbon layer from the Si surface during extended cycles. To overcome this problem, we develop a covalent modification strategy by chemically bonding a large conjugated polymer, poly-peri-naphthalene (PPN), on the surfaces of nano-Si particles through a mechanochemical method, followed by a carbonization reaction to convert the PPN polymer into carbon, thus forming a Si/C composite with a carbon coating layer tightly bonded on the Si surface. Due to the strong covalent bonding interaction of the Si surface with the PPN-derived carbon coating layer, the Si/C composite can keep its structural integrity and provide an effective surface protection during the fluctuating volume changes of the nano-Si cores. As a consequence, the thus-prepared Si/C composite anode demonstrates a reversible capacity of 1512.6 mA h g(-1), a stable cyclability over 500 cycles with a capacity retention of 74.2%, and a high cycling Coulombic efficiency of 99.5%, providing a novel insight for designing highly cyclable silicon anodes for new-generation Li-ion batteries.
引用
收藏
页码:16411 / 16416
页数:6
相关论文
共 28 条
[21]   Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles [J].
Wu, Hui ;
Yu, Guihua ;
Pan, Lijia ;
Liu, Nian ;
McDowell, Matthew T. ;
Bao, Zhenan ;
Cui, Yi .
NATURE COMMUNICATIONS, 2013, 4
[22]  
Wu H, 2012, NAT NANOTECHNOL, V7, P309, DOI [10.1038/NNANO.2012.35, 10.1038/nnano.2012.35]
[23]   Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage [J].
Yang, Jianping ;
Wang, Yunxiao ;
Li, Wei ;
Wang, Lianjun ;
Fan, Yuchi ;
Jiang, Wan ;
Luo, Wei ;
Wang, Yang ;
Kong, Biao ;
Selomulya, Cordelia ;
Liu, Hua Kun ;
Dou, Shi Xue ;
Zhao, Dongyuan .
ADVANCED MATERIALS, 2017, 29 (48)
[24]   Surface-Bound Silicon Nanoparticles with a Planar-Oriented N-Type Polymer for Cycle-Stable Li-Ion Battery Anode [J].
Zhang, Jingmin ;
Fan, Sijia ;
Wang, Hui ;
Qian, Jiangfeng ;
Yang, Hanxi ;
Ai, Xinping ;
Liu, Jincheng .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (14) :13251-13256
[25]   Zinc-assisted mechanochemical coating of a reduced graphene oxide thin layer on silicon microparticles to achieve efficient lithium-ion battery anodes [J].
Zhao, Zhongqiang ;
Cai, Xin ;
Yu, Xiaoyuan ;
Wang, Hongqiang ;
Li, Qingyu ;
Fang, Yueping .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (05) :1258-1268
[26]   Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries [J].
Zhou, Xiaosi ;
Yin, Ya-Xia ;
Wan, Li-Jun ;
Guo, Yu-Guo .
ADVANCED ENERGY MATERIALS, 2012, 2 (09) :1086-1090
[27]   Towards high energy density lithium battery anodes: silicon and lithium [J].
Zhu, Bin ;
Wang, Xinyu ;
Yao, Pengcheng ;
Li, Jinlei ;
Zhu, Jia .
CHEMICAL SCIENCE, 2019, 10 (30) :7132-7148
[28]   Silicon based lithium-ion battery anodes: A chronicle perspective review [J].
Zuo, Xiuxia ;
Zhu, Jin ;
Mueller-Buschbaum, Peter ;
Cheng, Ya-Jun .
NANO ENERGY, 2017, 31 :113-143