ON THE UPPER CENTRAL SERIES OF INFINITE GROUPS

被引:27
作者
De Falco, M. [1 ]
de Giovanni, F. [1 ]
Musella, C. [1 ]
Sysak, Y. P. [2 ]
机构
[1] Univ Naples Federico 2, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[2] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
Upper central series; hypercentre; hypercentral group;
D O I
10.1090/S0002-9939-2010-10625-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two relevant theorems by R. Baer and P. Hall show that a group is finite over a term with finite ordinal type of its upper central series if and only if it is finite-by-nilpotent. Extending these results, we prove here that if G is any group, the hypercentre factor group G/(Z) over bar (G) is finite if and only if G contains a finite normal subgroup N such that G/N is hypercentral (where the hypercentre Z(G) of G is defined as the last term of its upper central series).
引用
收藏
页码:385 / 389
页数:5
相关论文
共 7 条
[1]  
Amberg B., 1992, Products of Groups
[2]  
[Anonymous], 1952, MATH ANN, DOI 10.1007/BF01343558
[3]  
HALL P, 1956, P CAMBRIDGE PHILOS S, V52, P611
[4]  
HUPPERT B, 1983, ENDLICHE GRUPPEN, V1
[5]  
LENNOX JC, 2004, INFINITE SOLUBLE GRO
[6]  
Robinson D.J.S., 1972, FINITENESS CONDITION
[7]  
Schur I., 1902, P S APPL MATH, P1013