Soliton collisions and integrable aspects of the fifth-order Korteweg-de Vries equation for shallow water with surface tension

被引:15
作者
Sun, Wen-Rong [1 ]
Shan, Wen-Rui
Jiang, Yan
Wang, Pan
Tian, Bo
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
关键词
NONLINEAR SCHRODINGER MODEL; BACKLUND TRANSFORMATION; DARBOUX TRANSFORMATIONS; SYMBOLIC-COMPUTATION; BILLIARD SOLUTIONS; ACOUSTIC-WAVES; CAMASSA-HOLM; MULTISOLITON; NEBULONS; GEOMETRY;
D O I
10.1140/epjd/e2014-50687-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The fifth-order Korteweg-de Vries (KdV) equation works as a model for the shallow water waves with surface tension. Through symbolic computation, binary Bell-polynomial approach and auxiliary independent variable, the bilinear forms, N-soliton solutions, two different Bell-polynomial-type Backlund transformations, Lax pair and infinite conservation laws are obtained. Characteristic-line method is applied to discuss the effects of linear wave speed c as well as length scales tau and gamma on the soliton amplitudes and velocities. Increase of tau, c and gamma can lead to the increase of the soliton velocity. Soliton amplitude increases with the increase of tau. The larger-amplitude soliton is seen to move faster and then to overtake the smaller one. After the collision, the solitons keep their original shapes and velocities invariant except for the phase shift. Graphic analysis on the two and three-soliton solutions indicates that the overtaking collisions between/among the solitons are all elastic.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 37 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   THE GEOMETRY OF PEAKED SOLITONS AND BILLIARD SOLUTIONS OF A CLASS OF INTEGRABLE PDES [J].
ALBER, MS ;
CAMASSA, R ;
HOLM, DD ;
MARSDEN, JE .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (02) :137-151
[3]   The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE's of shallow water and dym type [J].
Alber, MS ;
Camassa, R ;
Fedorov, YN ;
Holm, DD ;
Marsden, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (01) :197-227
[4]   On billiard solutions of nonlinear PDEs [J].
Alber, MS ;
Camassa, R ;
Fedorov, YN ;
Holm, DD ;
Marsden, JE .
PHYSICS LETTERS A, 1999, 264 (2-3) :171-178
[5]   On second grade fluids with vanishing viscosity [J].
Busuioc, V .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12) :1241-1246
[6]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[7]   Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod [J].
Dai, HH .
ACTA MECHANICA, 1998, 127 (1-4) :193-207
[8]   On asymptotically equivalent shallow water wave equations [J].
Dullin, HR ;
Gottwald, GA ;
Holm, DD .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 190 (1-2) :1-14
[9]   Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves [J].
Dullin, HR ;
Gottwald, GA ;
Holm, DD .
FLUID DYNAMICS RESEARCH, 2003, 33 (1-2) :73-95
[10]   The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials [J].
Fan, Engui .
PHYSICS LETTERS A, 2011, 375 (03) :493-497