Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise

被引:9
作者
Cialenco, Igor [1 ]
Kim, Hyun-Jung [2 ]
机构
[1] IIT, Dept Appl Math, 10 W 32nd Str,Bldg Re,Room 220, Chicago, IL 60616 USA
[2] Univ Calif Santa Barbara, Dept Math, South Hall,Room 6607, Santa Barbara, CA 93106 USA
关键词
Parabolic Anderson model; Quadratic variation; Parameter estimation; Discrete sampling; Space-only noise; Malliavin-Stein's method;
D O I
10.1016/j.spa.2021.09.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive consistent and asymptotically normal estimators for the drift and volatility parameters of the stochastic heat equation driven by an additive space-only white noise when the solution is sampled discretely in the physical domain. We consider both the full space and the bounded domain. We establish the exact spatial regularity of the solution, which in turn, using power-variation arguments, allows building the desired estimators. We show that naive approximations of the derivatives appearing in the power-variation based estimators may create nontrivial biases, which we compute explicitly. The proofs are rooted in Malliavin-Stein's method. (C) 2021 ElsevierB.V. All rights reserved.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 27 条
[11]  
Cialenco I., ARXIV210304211
[12]   Drift estimation for discretely sampled SPDEs [J].
Cialenco, Igor ;
Delgado-Vences, Francisco ;
Kim, Hyun-Jung .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2020, 8 (04) :895-920
[13]   A note on parameter estimation for discretely sampled SPDEs [J].
Cialenco, Igor ;
Huang, Yicong .
STOCHASTICS AND DYNAMICS, 2020, 20 (03)
[14]   Statistical analysis of some evolution equations driven by space-only noise [J].
Cialenco, Igor ;
Kim, Hyun-Jung ;
Lototsky, Sergey V. .
STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (01) :83-103
[15]   Statistical inference for SPDEs: an overview [J].
Cialenco I. .
Statistical Inference for Stochastic Processes, 2018, 21 (2) :309-329
[16]   Parameter estimation for the stochastically perturbed Navier-Stokes equations [J].
Cialenco, Igor ;
Glatt-Holtz, Nathan .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (04) :701-724
[17]  
DaPrato G., 2014, ENCY MATH ITS APPL, V152
[18]   Parametric estimation for a parabolic linear SPDE model based on discrete observations [J].
Kaino, Yusuke ;
Uchida, Masayuki .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 211 :190-220
[19]   Estimation of the drift parameter for the fractional stochastic heat equation via power variation [J].
Khalil, Zeina Mahdi ;
Tudor, Ciprian .
MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2019, 6 (04) :397-417
[20]   Time-homogeneous parabolic Wick-Anderson model in one space dimension: regularity of solution [J].
Kim, H. -J. ;
Lototsky, S. V. .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (04) :559-591