Recovery of pointwise sources or small inclusions in 2D domains and rational approximation

被引:45
作者
Baratchart, L
Ben Abda, A
Ben Hassen, F
Leblond, J
机构
[1] INRIA, F-06902 Sophia Antipolis, France
[2] ENIT, LAMSIN, Tunis 1002, Tunisia
[3] Univ Gottingen, Inst Numer & Angew Math, D-37083 Gottingen, Germany
关键词
D O I
10.1088/0266-5611/21/1/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse problems of locating pointwise or small size conductivity defaults in a plane domain, from overdetermined boundary measurements of solutions to the Laplace equation. We express these issues in terms of best rational or meromorphic approximation problems on the boundary, with poles constrained to belong to the domain. This approach furnishes efficient and original resolution schemes.
引用
收藏
页码:51 / 74
页数:24
相关论文
共 54 条
[1]  
ABDA AB, UNPUB THEORETICAL AS
[2]  
Adamjan VM., 1971, MATH USSR SB, V15, P31
[3]   An accurate formula for the reconstruction of conductivity inhomogeneities [J].
Ammari, H ;
Seo, JK .
ADVANCES IN APPLIED MATHEMATICS, 2003, 30 (04) :679-705
[4]   Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume [J].
Ammari, H ;
Moskow, S ;
Vogelius, MS .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2003, 9 (03) :49-66
[5]   An inverse source problem for Maxwell's equations in magnetoencephalography [J].
Ammari, H ;
Bao, G ;
Fleming, JL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1369-1382
[6]   Identification of planar cracks by complete overdetermined data: Inversion formulae [J].
Andrieux, S ;
BenAbda, A .
INVERSE PROBLEMS, 1996, 12 (05) :553-563
[7]   How can the meromorphic approximation help to solve some 2D inverse problems for the Laplacian? [J].
Baratchart, L ;
Leblond, J ;
Mandréa, F ;
Saff, EB .
INVERSE PROBLEMS, 1999, 15 (01) :79-90
[8]   An LP analog to AAK theory for p ≥ 2 [J].
Baratchart, L ;
Seyfert, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 191 (01) :52-122
[9]   IDENTIFICATION AND RATIONAL L-2 APPROXIMATION - A GRADIENT ALGORITHM [J].
BARATCHART, L ;
CARDELLI, M ;
OLIVI, M .
AUTOMATICA, 1991, 27 (02) :413-418
[10]   ON A RATIONAL APPROXIMATION PROBLEM IN THE REAL HARDY SPACE H-2 [J].
BARATCHART, L ;
OLIVI, M ;
WIELONSKY, F .
THEORETICAL COMPUTER SCIENCE, 1992, 94 (02) :175-197