Representative model and flow characteristics of open pore cellular foam and potential use in proton exchange membrane fuel cells

被引:83
作者
Carton, J. G. [1 ]
Olabi, A. G. [2 ]
机构
[1] Dublin City Univ, Dept Mfg & Mech Engn, Dublin 9, Ireland
[2] Univ West Scotland, Inst Engn & Energy Technol, Paisley PA1 2BE, Renfrew, Scotland
关键词
PEM fuel cell; Flow plate; Metal foam; Pressure drop; CFD; Flow analysis; METAL FOAM; PRESSURE-DROP; HEAT-TRANSFER; NUMERICAL-SIMULATION; PERMEABILITY; COEFFICIENT; PERFORMANCE; CHANNELS; DESIGN; FIELD;
D O I
10.1016/j.ijhydene.2015.02.122
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study develops a Representative Unit Cell Structure (RUCS) model for Open Pore Cellular Foam (OPCF) material, based on a dodecahedron cell. Pressure, velocity and flow regime analysis is performed on simulation results of six different OPCFs, (10, 20, 30, 40, 45, 80 and 100 ppi), at five different inlet velocities (1 m/s, 3 m/s, 6 m/s, 9 m/s & 12 m/s). Pressure drop results were verified by numerical models (Dupuit Forchheimer, Ashby and Fourie and Du Plessis mathematical models) and experimental results from literature. From this study OPCF material can have benefits if used in a PEM fuel cell; in place of or in conjunction with conventional flow plates. It is concluded that OPCF materials can reduce the permeability of the gas flow through a flow plate, creating a more tortuous path for the fluid, allowing for diffusion plus convection based flow, unlike conventional flow plates. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5726 / 5738
页数:13
相关论文
共 39 条
[1]   Estimating vehicle emissions from road transport, case study: Dublin City [J].
Achour, H. ;
Carton, J. G. ;
Olabi, A. G. .
APPLIED ENERGY, 2011, 88 (05) :1957-1964
[2]  
Ashby MF., 2000, Metal foams: a design guide
[3]   Flow distribution in a bipolar plate of a proton exchange membrane fuel cell:: experiments and numerical simulation studies [J].
Barreras, F ;
Lozano, A ;
Valiño, L ;
Marín, C ;
Pascau, A .
JOURNAL OF POWER SOURCES, 2005, 144 (01) :54-66
[4]   A new application for nickel foam in alkaline fuel cells [J].
Bidault, F. ;
Brett, D. J. L. ;
Middleton, P. H. ;
Abson, N. ;
Brandon, N. P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (16) :6799-6808
[5]   Simulations of flow through open cell metal foams using an idealized periodic cell structure [J].
Boomsma, K ;
Poulikakos, D ;
Ventikos, Y .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2003, 24 (06) :825-834
[6]   Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels [J].
Carton, J. G. ;
Lawlor, V. ;
Olabi, A. G. ;
Hochenauer, C. ;
Zauner, G. .
ENERGY, 2012, 39 (01) :63-73
[7]   Wind/hydrogen hybrid systems: Opportunity for Ireland's wind resource to provide consistent sustainable energy supply [J].
Carton, J. G. ;
Olabi, A. G. .
ENERGY, 2010, 35 (12) :4536-4544
[8]   Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell [J].
Carton, J. G. ;
Olabi, A. G. .
ENERGY, 2010, 35 (07) :2796-2806
[9]   AIR FLOW IN ALUMINUM FOAM: HEAT TRANSFER AND PRESSURE DROPS MEASUREMENTS [J].
Cavallini, A. ;
Mancin, S. ;
Rossetto, L. ;
Zilio, C. .
EXPERIMENTAL HEAT TRANSFER, 2010, 23 (01) :94-105
[10]   Correlations for the pressure drop for flow through metal foam [J].
Dukhan, N. .
EXPERIMENTS IN FLUIDS, 2006, 41 (04) :665-672