Variation of the Wiener index under tree transformations

被引:15
作者
Rada, J [1 ]
机构
[1] Univ Los Andes, Fac Ciencias, Dept Matemat, Merida 5101, Venezuela
关键词
Wiener index; trees; coalescence of trees; partial order;
D O I
10.1016/j.dam.2004.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index W(T) is defined as the sum of distances between all pairs of vertices of the tree T. In this paper we find the variation of the Wiener index under certain tree transformations, which can be described in terms of coalescence of trees. As a consequence, conditions for nonisomorphic trees having equal Wiener index are presented. Also, a partial order on the collection of trees (with a fixed number of vertices) is introduced, providing structural information about the behavior of W. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 17 条
[1]  
Cvetkovic D. M., 1980, Spectra of Graphs-Theory and Application
[2]   Wiener index of hexagonal systems [J].
Dobrynin, AA ;
Gutman, I ;
Klavzar, S ;
Zigert, P .
ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) :247-294
[3]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[4]  
ENTRINGER RC, 1976, CZECH MATH J, V26, P283
[5]  
Gutman I, 2000, MATCH-COMMUN MATH CO, P145
[6]  
Gutman I, 1997, DISCRETE APPL MATH, V80, P1
[7]   Hyper-Wiener index vs. Wiener index.: Two highly correlated structure-descriptors [J].
Gutman, I ;
Furtula, B .
MONATSHEFTE FUR CHEMIE, 2003, 134 (07) :975-981
[8]   Relation between hyper-Wiener and Wiener index [J].
Gutman, I .
CHEMICAL PHYSICS LETTERS, 2002, 364 (3-4) :352-356
[9]  
Gutman I, 1997, MATCH-COMMUN MATH CO, P3
[10]  
GUTMAN I, 1993, INDIAN J CHEM A, V32, P651