Molybdenum-Promoted Surface Reconstruction in Polymorphic Cobalt for Initiating Rapid Oxygen Evolution

被引:110
作者
Bai, Juan [1 ,2 ]
Mei, Jun [1 ,2 ]
Liao, Ting [1 ,3 ]
Sun, Qiang [4 ]
Chen, Zhi-Gang [4 ,5 ]
Sun, Ziqi [1 ,2 ]
机构
[1] Queensland Univ Technol, Ctr Mat Sci, 2 George St, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Sch Chem & Phys, 2 George St, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, Sch Mech Med & Proc Engn, 2 George St, Brisbane, Qld 4000, Australia
[4] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
[5] Univ Southern Queensland, Ctr Future Mat, Brisbane, Qld 4300, Australia
关键词
cobalt; electrocatalysts; molybdenum; oxygen evolution reaction; surface reconstruction; ELECTROCATALYSTS; STABILIZATION; ACTIVATION; CATALYSTS;
D O I
10.1002/aenm.202103247
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It has been well recognized that the surface reconstruction of electrocatalysts at the initial stage in the form of phase transitions, defect migrations, valence regulations, etc., plays a critical role in generating real, surface active catalytic centers and achieving steady surface reactions. It is also expected that a low activation energy barrier for initiating surface reconstruction is crucial for rapid and stable electrochemical catalysis. Despite this, the surface reconstruction kinetics and their effects on catalytic reactions have been rarely investigated. Herein, using phase modulated polymorphic cobalt-based catalysts with tailorable nitrogen-metal bonds through a cationic molybdenum-substitution strategy, real-time X-ray photoelectron spectroscopy (XPS) structural monitoring of the surface chemical state evolution during the catalytic reaction is performed to track the initial surface reconstruction kinetics during the alkaline oxygen evolution reaction (OER). It is concluded that the molybdenum-modulated cobalt-based nanocatalyst can be tuned with favorable initial surface reconstruction and stabilized active centers to reach optimized OER catalysis, accompanied by a low onset overpotential of only 210 mV and a favorable overpotential at 10 mA cm(-2) of 290 mV, outperforming the commercial, noble-metallic RuO2 catalyst. This study thus provides new conceptual insights into rationally regulating the initial surface reconstruction kinetics for high-performance electrocatalysis reactions.
引用
收藏
页数:11
相关论文
共 55 条
[1]   In Situ Formation of Nano Ni-Co Oxyhydroxide Enables Water Oxidation Electrocatalysts Durable at High Current Densities [J].
Abed, Jehad ;
Ahmadi, Shideh ;
Laverdure, Laura ;
Abdellah, Ahmed ;
O'Brien, Colin P. ;
Cole, Kevin ;
Sobrinho, Pedro ;
Sinton, David ;
Higgins, Drew ;
Mosey, Nicholas J. ;
Thorpe, Steven J. ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2021, 33 (45)
[2]   Competing Effect of Co3+ Reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co3O4 Systems in Alkaline Medium [J].
Alex, Chandraraj ;
Sarma, Saurav Ch ;
Peter, Sebastian C. ;
John, Neena S. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) :5439-5447
[3]   Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment [J].
An, Li ;
Wei, Chao ;
Lu, Min ;
Liu, Hanwen ;
Chen, Yubo ;
Scherer, Guenther G. ;
Fisher, Adrian C. ;
Xi, Pinxian ;
Xu, Zhichuan J. ;
Yan, Chun-Hua .
ADVANCED MATERIALS, 2021, 33 (20)
[4]   Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction [J].
Bergmann, Arno ;
Jones, Travis E. ;
Moreno, Elias Martinez ;
Teschner, Detre ;
Chernev, Petko ;
Gliech, Manuel ;
Reier, Tobias ;
Dau, Holger ;
Strasser, Peter .
NATURE CATALYSIS, 2018, 1 (09) :711-719
[5]   Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J].
Cao, Bingfei ;
Veith, Gabriel M. ;
Neuefeind, Joerg C. ;
Adzic, Radoslav R. ;
Khalifah, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) :19186-19192
[6]   Origins of high onset overpotential of oxygen reduction reaction at Pt-based electrocatalysts: A mini review [J].
Chen, Wei ;
Huang, Jun ;
Wei, Jie ;
Zhou, Da ;
Cai, Jun ;
He, Zheng-Da ;
Chen, Yan-Xia .
ELECTROCHEMISTRY COMMUNICATIONS, 2018, 96 :71-76
[7]   Phase engineering of nanomaterials [J].
Chen, Ye ;
Lai, Zhuangchai ;
Zhang, Xiao ;
Fan, Zhanxi ;
He, Qiyuan ;
Tan, Chaoliang ;
Zhang, Hua .
NATURE REVIEWS CHEMISTRY, 2020, 4 (05) :243-256
[8]   Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium [J].
Chen, Zhu ;
Kronawitter, Coleman X. ;
Yeh, Yao-Wen ;
Yang, Xiaofang ;
Zhao, Peng ;
Yao, Nan ;
Koel, Bruce E. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (02) :842-850
[9]   CoMo2S4 with Superior Conductivity for Electrocatalytic Hydrogen Evolution: Elucidating the Key Role of Co [J].
Cheng, Hui ;
Liu, Qiong ;
Diao, Yuwei ;
Wei, Liling ;
Chen, Jianghan ;
Wang, Fuxian .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (37)
[10]   Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction [J].
Chung, Dong Young ;
Lopes, Pietro P. ;
Martins, Pedro Farinazzo Bergamo Dias ;
He, Haiying ;
Kawaguchi, Tomoya ;
Zapol, Peter ;
You, Hoydoo ;
Tripkovic, Dusan ;
Strmcnik, Dusan ;
Zhu, Yisi ;
Seifert, Soenke ;
Lee, Sungsik ;
Stamenkovic, Vojislav R. ;
Markovic, Nenad M. .
NATURE ENERGY, 2020, 5 (03) :222-230