Factorized approach to nonlinear MPC using a radial basis function model

被引:18
|
作者
Bhartiya, S [1 ]
Whiteley, JR [1 ]
机构
[1] Oklahoma State Univ, Sch Chem Engn, Stillwater, OK 74078 USA
关键词
D O I
10.1002/aic.690470213
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A new computationally efficient approach for nonlinear model predictive control (NMPC) presented here uses the factorability of radial basis function (RBF) process models in a traditional model predictive control (MPC) framework. The key to the approach is to formulate the RBF process model that can make nonlinear predictions across a p-step horizon without using future unknown process measurements. The RBF model avoids error propagation from use of model predictions as input in a recursive or iterative manner. The resulting NMPC formulation using the RBF model provides analytic expressions for the gradient and Hessian of the controller's objective function in terms of RBF network parameters. Solution of the NMPC optimization problem is simplified significantly by factorization of the RBF model output into terms containing only known and unknown parts of the process.
引用
收藏
页码:358 / 368
页数:11
相关论文
共 50 条
  • [1] Factorized f-step radial basis function model for model predictive control
    Tok, D. K. Siong
    Shi, Yiran
    Tian, Yantao
    Yu, Ding-Li
    NEUROCOMPUTING, 2017, 239 : 102 - 112
  • [2] Nonlinear function approximation using radial basis function neural networks
    Husain, H
    Khalid, M
    Yusof, R
    2002 STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT, PROCEEDINGS: GLOBALIZING RESEARCH AND DEVELOPMENT IN ELECTRICAL AND ELECTRONICS ENGINEERING, 2002, : 326 - 329
  • [3] Nonlinear function learning using optimal radial basis function networks
    Krzyzak, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (01) : 293 - 302
  • [4] On the Approximation of a Nonlinear Biological Population Model Using Localized Radial Basis Function Method
    Uddin, Marjan
    Ali, Hazrat
    Taufiq, Muhammad
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2019, 24 (02)
  • [5] A nonlinear MESFET model for intermodulation analysis using a generalized radial basis function network
    Santamaría, I
    Lázaro, M
    Pantaleón, CJ
    García, JA
    Tazón, A
    Mediavilla, A
    NEUROCOMPUTING, 1999, 25 (1-3) : 1 - 18
  • [6] Nonlinear image restoration using a radial basis function network
    Icho, K
    Iiguni, Y
    Maeda, H
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (16) : 2441 - 2450
  • [7] Nonlinear image restoration using a radial basis function network
    Icho, Keiji
    Liguni, Youji
    Maeda, Hajime
    Eurasip Journal on Applied Signal Processing, 2004, 2004 (16): : 2441 - 2450
  • [8] Nonlinear Image Restoration Using a Radial Basis Function Network
    Keiji Icho
    Youji Iiguni
    Hajime Maeda
    EURASIP Journal on Advances in Signal Processing, 2004
  • [9] Novel nonlinear dynamic system modeling approach using radial basis function neural networks
    Li, Y.J.
    Wu, T.J.
    Zhao, M.W.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2001, 21 (03):
  • [10] Radial basis function approach to nonlinear Granger causality of time series
    Ancona, N
    Marinazzo, D
    Stramaglia, S
    PHYSICAL REVIEW E, 2004, 70 (05): : 7 - 1