Neutron Interferometry at the National Institute of Standards and Technology

被引:13
作者
Pushin, D. A. [1 ,2 ]
Huber, M. G. [3 ]
Arif, M. [3 ]
Shahi, C. B. [4 ]
Nsofini, J. [1 ,2 ]
Wood, C. J. [1 ,2 ]
Sarenac, D. [1 ,2 ]
Cory, D. G. [1 ,5 ,6 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] NIST, Gaithersburg, MD 20899 USA
[4] Tulane Univ, Phys & Engn Phys Dept, New Orleans, LA 70118 USA
[5] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[6] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
GRAVITY;
D O I
10.1155/2015/687480
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Neutron interferometry has proved to be a very precise technique for measuring the quantum mechanical phase of a neutron caused by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the interferometer can be many centimeters (and many centimeters apart) making it very practical to study a variety of samples, fields, potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With recent advances in quantum information processing especially quantum error correction (QEC) codes we were able to demonstrate a neutron interferometer that is insensitive to vibrational noise. A facility at NIST's Center for Neutron Research (NCNR) has just been commissioned with higher neutron flux than the NCNR's older interferometer setup. This new facility is based on QEC neutron interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its applications to quantum computing, gravity, and material research.
引用
收藏
页数:7
相关论文
共 23 条
[1]  
ARIF M, 1994, P SOC PHOTO-OPT INS, V2264, P20, DOI 10.1117/12.188872
[2]  
Bonse U., 1979, Neutron interferometry: proceedings of an international workshop held 5-7 June 1978 at the Institut Max von Laue-Paul Langevin, Grenoble
[3]   Probing strongly coupled chameleons with slow neutrons [J].
Brax, Philippe ;
Pignol, Guillaume ;
Roulier, Damien .
PHYSICAL REVIEW D, 2013, 88 (08)
[4]   OBSERVATION OF GRAVITATIONALLY INDUCED QUANTUM INTERFERENCE [J].
COLELLA, R ;
OVERHAUSER, AW ;
WERNER, SA .
PHYSICAL REVIEW LETTERS, 1975, 34 (23) :1472-1474
[5]   Neutron interferometric method to provide improved constraints on non-Newtonian gravity at the nanometer scale [J].
Greene, Geoffrey L. ;
Gudkov, Vladimir .
PHYSICAL REVIEW C, 2007, 75 (01)
[6]   Precision Measurement of the n-3He Incoherent Scattering Length Using Neutron Interferometry [J].
Huber, M. G. ;
Arif, M. ;
Black, T. C. ;
Chen, W. C. ;
Gentile, T. R. ;
Hussey, D. S. ;
Pushin, D. A. ;
Wietfeldt, F. E. ;
Yang, L. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[7]   SPECTRAL MODULATION AND SQUEEZING AT HIGH-ORDER NEUTRON INTERFERENCES [J].
JACOBSON, DL ;
WERNER, SA ;
RAUCH, H .
PHYSICAL REVIEW A, 1994, 49 (05) :3196-3200
[8]   Gravitationally induced quantum interference using a floating interferometer crystal [J].
Kaiser, H. ;
Armstrong, N. L. ;
Wietfeldt, F. E. ;
Huber, M. ;
Black, T. C. ;
Arif, M. ;
Jacobson, D. L. ;
Werner, S. A. .
PHYSICA B-CONDENSED MATTER, 2006, 385-86 :1384-1387
[9]   DIRECT MEASUREMENT OF THE LONGITUDINAL COHERENCE LENGTH OF A THERMAL-NEUTRON BEAM [J].
KAISER, H ;
WERNER, SA ;
GEORGE, EA .
PHYSICAL REVIEW LETTERS, 1983, 50 (08) :560-563
[10]  
Lidar DA, 2003, LECT NOTES PHYS, V622, P83