Generalized Orlicz spaces and related PDE

被引:83
作者
Harjulehto, Petteri [1 ]
Hasto, Peter [1 ]
Klen, Riku [1 ]
机构
[1] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
关键词
Musielak-Orlicz spaces; Orlicz space; Sobolev space; Variable exponent; Poincare inequality; Dirichlet energy integral; Existence of solution; Nonstandard growth; VARIABLE EXPONENT; RIESZ-POTENTIALS; FUNCTIONALS; INEQUALITIES; REGULARITY;
D O I
10.1016/j.na.2016.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of R-n. The proof is based on an extension result for Phi-functions. We study generalized Sobolev-Orlicz spaces and establish density of smooth functions and the Poincare inequality. As applications we establish the existence of solutions of the phi-Laplace equation with zero and non-zero right-hand side. Further, we systematize assumptions for Phi-functions and prove several basic tools needed for the study of differential equations of generalized Orlicz growth. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:155 / 173
页数:19
相关论文
共 31 条
[1]   On some new non-linear diffusion models for the image filtering [J].
Alaoui, Mohammed Kbiri ;
Nabil, Tamer ;
Altanji, Mohamed .
APPLICABLE ANALYSIS, 2014, 93 (02) :269-280
[2]  
[Anonymous], 2013, INT SERIES NUMERICAL
[3]  
[Anonymous], TOHOKU MATH IN PRESS
[4]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[5]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[6]  
BOJARSKI B, 1988, LECT NOTES MATH, V1351, P52
[7]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[8]   Calderon-Zygmund estimates and non-uniformly elliptic operators [J].
Colombo, Maria ;
Mingione, Giuseppe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (04) :1416-1478
[9]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273
[10]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496