Complex energy method for scattering processes

被引:31
作者
Kamada, H [1 ]
Koike, Y
Glöckle, W
机构
[1] Kyushu Inst Technol, Dept Phys, Fac Engn, Kitakyushu, Fukuoka 8048550, Japan
[2] Hosei Univ, Ctr Sci Res, Tokyo 1028160, Japan
[3] Univ Tokyo, Ctr Nucl Study, Wako, Saitama 3510198, Japan
[4] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany
来源
PROGRESS OF THEORETICAL PHYSICS | 2003年 / 109卷 / 05期
关键词
D O I
10.1143/PTP.109.869
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method for solving few-body scattering equations is proposed and examined. The solution of the scattering equations at complex energies is analytically continued to get scatterin- t-matrix with real positive energy. Numerical examples document that the method works well for two-nucleon scattering and three-nucleon scattering, if the set of complex energies is properly chosen.
引用
收藏
页码:869 / 874
页数:6
相关论文
共 23 条
[1]   REDUCTION OF 3-PARTICLE COLLISION PROBLEM TO MULTI-CHANNEL 2-PARTICLE LIPPAMNN-SCHWINGER EQUATIONS [J].
ALT, EO ;
GRASSBERGER, P ;
SANDHAS, W .
NUCLEAR PHYSICS B, 1967, B 2 (02) :167-+
[2]   THEORY OF NEUTRON-DEUTERON BREAK-UP AT 14.4 MEV [J].
CAHILL, RT ;
SLOAN, IH .
NUCLEAR PHYSICS A, 1971, A165 (01) :161-179
[3]   S-WAVE ELASTIC POSITRON-HYDROGEN SCATTERING IN IONIZATION REGION [J].
DOOLEN, G ;
MCCARTOR, G ;
MCDONALD, FA ;
NUTTALL, J .
PHYSICAL REVIEW A, 1971, 4 (01) :108-&
[4]   N+D BREAK-UP REACTION WITH SEPARABLE POTENTIALS [J].
EBENHOH, W .
NUCLEAR PHYSICS A, 1972, A191 (01) :97-&
[5]   RESPONSE FUNCTIONS FROM INTEGRAL-TRANSFORMS WITH A LORENTZ KERNEL [J].
EFROS, VD ;
LEIDEMANN, W ;
ORLANDINI, G .
PHYSICS LETTERS B, 1994, 338 (2-3) :130-133
[6]  
EFROS VD, 1985, SOV J NUCL PHYS+, V41, P949
[7]  
FADDEEV LD, 1961, ZH EKSP TEOR FIZ, V12, P1014
[8]   The three-nucleon continuum: Achievements, challenges and applications [J].
Glockle, W ;
Witala, H ;
Huber, D ;
Kamada, H ;
Golak, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 274 (3-4) :107-285
[9]  
Glockle W., 1983, QUANTUM MECH FEW BOD
[10]   ALGORITHM FOR SOLVING THE FADDEEV-EQUATIONS IN THE 3-BODY CONTINUUM UNDER AVOIDANCE OF MOVING LOGARITHMIC SINGULARITIES [J].
HUBER, D ;
KAMADA, H ;
WITALA, H ;
GLOCKLE, W .
FEW-BODY SYSTEMS, 1994, 16 (04) :165-175